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Abstract

We consider words over the alphabet [k] = {1, 2, . . . , k}, k ≥ 2. For a fixed
nonnegative integer p, a p-succession in a word w1w2 · · ·wn consists of two consecutive
letters of the form (wi, wi + p), i = 1, 2, . . . , n − 1. We analyze words with respect
to a given number of contained p-successions. First we find the mean and variance
of the number of p-successions. We then determine the distribution of the number
of p-successions in words of length n as n (and possibly k) tends to infinity; a simple
instance of a phase transition (Gaussian-Poisson-degenerate) is encountered. Finally
we also investigate successions in compositions of integers.

1 Introduction

We consider words over the alphabet [k] = {1, 2, . . . , k}, k ≥ 2. For a fixed nonnegative
integer p, a p-succession in a word w1w2 · · ·wn consists of two consecutive letters of the
form (wi, wi+p), i = 1, 2, . . . , n−1. For example the word 1324122243 contains 3 instances
of 2-successions: 13, 24, 24. It is immediate that if p ≥ k, then no word over [k] can contain
a p-succession.

In this paper we analyze words with respect to a given number of contained p-successions.
We will also investigate successions in compositions (ordered partitions) of integers.

The subject of enumeration of finite sequences according to the number of p-successions
has been much studied in the literature. The classical definition, in which p = 1, was first
applied by Kaplansky and Riordan, in the 1940’s, to the enumeration of subsets of [k] (see
[9, 17]). Subsequently, several authors have considered the enumeration of permutations
of [k] by the number of 1-successions, in conjunction with other well-known permutation
statistics [4, 15, 16, 20]. Extentions of the 1-succession idea in the case of subsets and
set partitions have been studied in [11] and [12, 13], respectively. Recently, two of the
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authors have carried out an interesting enumeration of integer partitions with respect to
p-successions in [10].

Patterns in words, of which successions are a special case, have also been studied ex-
tensively in the past, also in view of their importance in computer science. A general
framework for the analysis of patterns was developed in the late seventies and early eight-
ies, in particular in the works of Goulden and Jackson [6] and Guibas and Odlyzko [7].
Nowadays, there are even software packages available that determine generating functions
for the problem of counting occurrences of patterns in words automatically, see [1, 14]. For
further information on this rich subject, we refer to the books by Flajolet and Sedgewick
[5] and Szpankowski [19] and the references therein.

We are interested in the distribution of the number of p-successions in words of length
n as n (and possibly k) tends to infinity. To this end, we first derive a bivariate generating
function for the number of words with a given number of p-successions in Section 2. The
limiting distribution is obtained in Section 3, see Theorem 3; it is a well known fact that the
distibution of the number of certain pattern occurrences is asymptotically Gaussian [2] as
n → ∞ if k, the size of the alphabet, is fixed. If n and k are allowed to grow simultaneously,
it turns out that this remains true as long as n grows faster than k. If k grows at the same
speed as k, however, we encounter a phase transition: the limiting distribution is a Poisson
distribution in this case. For even larger k, the distribution becomes degenerate.

In Section 4 we determine asymptotics for words with no p-successions. The enumera-
tion of integer compositions by the number of p-successions is considered in Section 5. The
asserted results include the mean and variance of the number of p-successions in a random
composition of an integer n. Again, the limiting distribution is found to be Gaussian.

2 Generating functions

We denote the length of a word w by ℓ(w), the last letter of w by t(w) and the number of
its p-successions by s(w); p is assumed to be fixed throughout the paper, hence we ignore
the dependence of s(w) on p. Furthermore, we will also assume that p is nonnegative, since
a p-succession in a word w corresponds to a (−p)-succession in the reversed word. Finally,
we assume that k > p, since otherwise there cannot be any p-succession in any word over
the alphabet [k]. Define the generating function

vj(x, y) =
∑

w : t(w)=j

xℓ(w)ys(w),

where the summation is over all words whose last letter is j (j ∈ [k]). It is easy to see that
the functions v1, v2, . . . , vk satisfy the functional equation

vj(x, y) =

{

x + x
∑k

i=1,i6=j−p vi(x, y) + xyvj−p(x, y) j > p,

x + x
∑k

i=1 vi(x, y) j ≤ p.

Assume first that p > 0; write k = ap + b, where 0 ≤ b < p, and set V (x, y) = 1 +
∑k

i=1 vi(x, y). Then V (x, y) is the generating function for all words (including the empty
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word), which is what we are actually interested in. It follows that vj(x, y) = xV (x, y) for
j ≤ p and

vj(x, y) = xV (x, y) + x(y − 1)vj−p(x, y)

otherwise. Straightforward induction yields

vj(x, y) =
1 − xr(y − 1)r

1 − x(y − 1)
· xV (x, y)

if (r − 1)p < j ≤ rp. Writing z = x(y − 1) for convenience, we can rewrite the sum of all
vj as follows:

V (x, y) = 1 +
k
∑

i=1

vi(x, y) = 1 + pxV (x, y)
a
∑

r=1

1 − zr

1 − z
+ bxV (x, y)

1 − za+1

1 − z

= 1 +
xV (x, y)

1 − z

(

ap − pz(1 − za)

1 − z
+ b
(

1 − za+1
)

)

= 1 +
xV (x, y)

1 − z

(

k − z

1 − z
(p(1 − za) + b(1 − z)za)

)

.

Solving for V (x, y) yields

V (x, y) =

(

1 − x

(1 − z)2

(

k(1 − z) − z (p(1 − za) + b(1 − z)za)
)

)−1

=

(

1 − x

(1 − z)2

(

k − (k + p)z + (p − b)za+1 + bza+2
)

)−1

The special case p = 1 occurs as Exercise 2.4.14 in [6]. The case p = 0 can be treated in
a similar way, and indeed one obtains the same formula (with p = b = 0, even though a is
undefined in this case). Then the generating function simply reduces to

V (x, y) =

(

1 − kx

1 − z

)−1

.

It should also be noted that

V (x, 1) =
1

1 − kx
,

as expected. Differentiating the generating function with respect to y and plugging in
y = 1, one immediately finds explicit formulae for the mean and variance of the number of
successions: one has

Vy(x, 1) =
(k − p)x2

(1 − kx)2

and

Vyy(x, 1) + Vy(x, 1) =
2(k − p)2x4

(1 − kx)3
+

(k − p)x2

(1 − kx)2
+ [a > 1]

2(k − 2p)x3

(1 − kx)2
.

Here we use Iverson’s notation: [P ] = 1 if P is true and [P ] = 0 otherwise. Extracting
coefficients and noting that [a > 1] = [k ≥ 2p], one obtains the following theorem:
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Theorem 1 The average number of p-successions in words of length n is

(k − p)(n − 1)

k2

for n > 0, while the variance is given by

(k − p)(n − 1)

k2
− (k − p)2(3n − 5)

k4
+ [k ≥ 2p]

2(k − 2p)(n − 2)

k3

for n > 1.

3 Limiting distribution

Let us now consider the distribution of the number of p-successions in more detail. If k
is constant, then it follows easily from general theorems that the limiting distribution is
Gaussian. Actually, this is known in more generality for arbitrary patterns in words [2],
we also refer to [5, Note IX.33] and the references therein. Therefore, we consider a more
general model in which k, the size of the alphabet, grows simultaneously with the length of
our random words. It turns out that we have a very simple example of a phase transition:
if k grows slowly compared to n (so that k

n
→ 0), the limiting distribution is still Gaussian.

If, on the other hand, k
n
→ ∞, then Theorem 1, together with the Markov inequality,

shows that the number of p-successions is almost surely 0. In the remaining case that k
and n are of the same asymptotic order, we will obtain a Poisson distribution in the limit.

In order to prove these results, we return to our bivariate generating function. For the
distribution of the number of successions, the behavior around y = 1 (and thus z = 0) is
essential. First we prove the following lemma:

Lemma 2 If |y − 1| ≤ 1
10

, then the polynomial

P (x) = (1−x(y−1))2−x
(

k − (k + p)x(y − 1) + (p − b)xa+1(y − 1)a+1 + bxa+2(y − 1)a+2
)

has exactly one zero ρ = ρ(u, k) such that |ρ| < 2
k
, where u = y − 1. This zero satisfies the

inequality
∣

∣

∣

∣

ρ − 1

k

∣

∣

∣

∣

≤ 13|u|
k2

.

Proof: We compare the polynomial to the linear polynomial 1 − kx, which clearly has
exactly one zero inside the circle |x| = 2

k
. On this circle, one has |1 − kx| ≥ 1 and on the

other hand, writing u = y − 1 (so that |u| ≤ 1
10

),

|P (x) − (1 − kx)| =
∣

∣−2xu + x2u2 + (k + p)x2u − (p − b)xa+2ua+1 − bxa+3ua+2
∣

∣

≤ 2|x||u| + |x|2|u|2 + (k + p)|x|2|u| + (p − b)|x|a+2|u|a+1 + b|x|a+3|u|a+2

≤ 2|x||u| + |x|2|u|2 + 2k|x|2|u| + p|x|3|u|2

≤ 2

5k
+

1

25k2
+

4

5k
+

2

25k2
=

6

5k
+

3

25k2
< 1.
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Hence, by Rouché’s Theorem, there must be exactly one zero inside the circle |x| = 2
k
.

Furthermore, the above derivation shows that

|P (x) − (1 − kx)| ≤ 12|u|
k

+
12|u|2

k2
≤ 13|u|

k

holds for |x| ≤ 2
k
. Hence, if P (ρ) = 0, one has

|1 − kρ| ≤ 13|u|
k

and thus
∣

∣

∣

∣

ρ − 1

k

∣

∣

∣

∣

≤ 13|u|
k2

,

as claimed. �

Now we can apply the residue theorem to extract the coefficient of xn from V (x, y): if
|u| = |y − 1| ≤ 1

10
, then

[xn]V (x, y) =
1

2πi

∮

|z|=r

z−n−1V (z, y) dy =
1

2πi

∮

|z|=r

z−n−1(1 − z(y − 1))2P (z)−1 dy

for any 0 < r < |ρ|. We shift the path of integration to obtain

[xn]V (x, y) = −ρ−n−1 Resz=ρ(1 − uz)2P (z)−1 +
1

2πi

∮

|z|=2/k

z−n−1(1 − uz)2P (z)−1 dy

= −ρ−n(1 − uρ)2

ρP ′(ρ)
+

1

2πi

∮

|z|=2/k

z−n−1(1 − uz)2P (z)−1 dy

By the inequalities above, |P (z)| is uniformly bounded below on the circle |z| = 2
k

by an
absolute positive constant. Hence,

[xn]V (x, y) = −ρ−n(1 − uρ)2

ρP ′(ρ)
+ O((k/2)n),

uniformly for |u| ≤ 1
10

. Note that ρ ≤ 1
k

+ 13|u|
k2 ≤ 33

20k
, so the error term is indeed smaller

than the main term by an exponential factor. For fixed k, this formula would already
imply a central limit theorem by Hwang’s Quasi-Power Theorem ([8], see also [5, Theorem
IX.8]). If k is allowed to grow with n, we have to do a little more work.

First we need more precise asymptotic information about ρ: we assume that a > 1,
since the case a = 1 can be treated analogously and since it can only occur if k is bounded.
Noting that ρ = O(k−1), the definition of ρ yields

0 = P (ρ) = 1 − (k + 2u)ρ + (u2 + ku + pu)ρ2 + O(k−4u3)
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and thus

ρ =
k + 2u −

√

(k + 2u)2 − 4(u2 + ku + pu)(1 + O(k−4u3))

2(u2 + ku + pu)

=
k + 2u −

√

k2 − 4pu + O(k−3u4)

2u(k + p + u)

=
1

k
− k − p

k3
u +

k2 − 2kp + 2p2

k5
u2 + O(k−4u3)

after a few simplifications. Plugging in, one also obtains

−(1 − uρ)2

ρP ′(ρ)
= 1 + O(k−1u).

Let ωn denote the number of p-successions in a random word of length n. The moment
generating function of this random variable is given by

E
(

eωnt
)

= k−n[xn]V (x, et).

Instead of dealing with ωn directly, we consider the normalized random variable ̟n =
ωn−µn

σn

, where µn and σ2
n are the mean and variance of ωn respectively, as given in Theorem 1.

The moment generating function of ̟n is given by

E
(

e(ωn−µn)t/σn

)

= k−ne−µnt/σn [xn]V (x, et/σn).

Now we apply the asymptotic formula for [xn]V (x, y) with y = et/σn (and thus u = y−1 =
t

σn

+ t2

2σ2
n

+ O
(

t3

σ3
n

)

) to obtain

ρ =
1

k
− k − p

k3
· t

σn

+

(

k2 − 2kp + 2p2

k5
− k − p

2k3

)

· t2

σ2
n

+ O

(

t3

k2σ3
n

)

.

It follows that

log(kρ) = −k − p

k2
· t

σn

− k3 − k2p − k2 + 2kp − 3p2

2k4
· t2

σ2
n

+ O

(

t3

kσ3
n

)

and thus

E
(

e(ωn−µn)t/σn

)

= k−ne−µnt/σn [xn]V (x, et/σn) = e−µnt/σn ·
(

−(1 − uρ)2

ρP ′(ρ)

)

· (kρ)−n + O
(

e−µnt/σn2−n
)

= exp

(

−µnt

σn

+
(k − p)n

k2
· t

σn

+
(k3 − k2p − k2 + 2kp − 3p2)n

2k4
· t2

σ2
n

+ O

(

t3n

kσ3
n

))

·
(

1 + O

(

t

kσn

))

+ O
(

e−µnt/σn2−n
)

.
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Taking into account that

µn =
(k − p)n

k2
+ O(k−1) and σ2

n =
(k3 − k2p − k2 + 2kp − 3p2)n

k4
+ O(k−1),

this reduces to

E
(

e(ωn−µn)t/σn

)

= exp

(

t2

2
+ O

(

t

kσn

+
t3n

kσ3
n

))

+ O
(

e−µnt/σn2−n
)

= exp

(

t2

2
+ O

(

t√
kn

+
t3
√

k√
n

))

+ O
(

e−µnt/σn2−n
)

.

Hence, the moment generating function tends to et2/2 (pointwise and uniformly on compact
subsets of R) if σ2

n ∼ n
k
→ ∞ (or, in other words, k

n
→ 0), which is the moment generating

function of a standard normal distribution. By Curtiss’s Theorem [3], this implies that the
distribution of ̟n tends weakly to a standard normal distribution.

Things are slightly different if k is proportional to n, i.e. k ∼ n
c

for some positive
constant c. In this case, the mean and variance no longer tend to infinity; in fact, both
tend to c. However, the proof of convergence to a limiting distribution is actually shorter in
this case: one can even work directly with the ordinary probability function of ωn, namely

∞
∑

i=0

P(ωn = i)yi = k−n[xn]V (x, y).

We obtain the following asymptotic formulae:

ρ =
1

k
− u

k2
+ O(k−3),

thus
log(kρ) = −u

k
+ O(k−2)

and

−(1 − uρ)2

ρP ′(ρ)
= 1 + O(k−1).

Hence we have

k−n[xn]V (x, y) = (1 + O(k−1))(kρ)−n + O(2−n)

= (1 + O(k−1)) exp
(un

k
+ O(nk−2)

)

+ O(2−n)

= exp
(un

k
+ O(n−1)

)

+ O(2−n),

which tends to exp(cu) = exp(c(y−1)) (at least if |u| < 1
10

), which is exactly the probability
generating function of a Poisson distribution with mean and variance c. Using [5, Theorem
IX.1], it follows that the distribution of ωn tends to a Poisson distribution, and we end up
with the following theorem that summarizes the results of this section:
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Theorem 3 If k
n
→ 0, then the distribution of the number of p-successions is asymptot-

ically normal; if k and n are of the same order, i.e., k ∼ n
c

for some constant c, then
the distribution of the number of p-successions tends to a Poisson distribution. Finally, if
k
n
→ ∞, then there are almost surely no p-successions in a random word of length n, so

the distribution is degenerate in this case.

4 Words without p-successions

The generating function for words without p-successions can be found by putting y = 0 in
V (x, y). One obtains

W (x) =

(

1 − x

(1 + x)2

(

k + (k + p)x + (p − b)(−x)a+1 + b(−x)a+2
)

)−1

.

The dominant pole of this function must lie between 1
k

and 1
k−1

: this follows from the
observation that there are at least k(k−1)n−1 words of length n without p-successions, but
at most kn such words. For large k, this pole (let us denote it by ρ0) can be approximated
quite well: one has

∣

∣(p − b)(−ρ0)
a+2 + b(−ρ0)

a+3
∣

∣ ≤ pρ
k/p+1
0 = O

(

(k − 1)−k/p−1
)

and thus
(1 + ρ0)

2 − kρ0 − (k + p)ρ2
0 + O

(

(k − 1)−k/p−1
)

= 0,

from which one deduces

ρ0 =

√

k2 + 4p − (k − 2)

2(k + p − 1)
+ O

(

(k − 1)−k/p−2
)

.

The coefficient [xn]W (x) is asymptotically (−Resz=ρ0
W (z))ρ−n−1

0 , and so one obtains the
following theorem:

Theorem 4 The number of words of length n without p-successions is asymptotically given
by αkβ

n
k , where

αk =
(k + p)(k +

√

k2 + 4p) + 2p

2(k + p − 1)
√

k2 + 4p
+ O

(

(k − 1)−k/p−1
)

and

βk =

√

k2 + 4p + k − 2

2
+ O

(

(k − 1)−k/p
)

.

Note that the formulae for αk and βk are exact (without the error term) if p = 0.
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5 Successions in compositions

Compositions can be treated in a similar way: in analogy to Section 2, we define the
generating function vj(x, y) for compositions whose last summand is j (this approach is
essentially equivalent to the “adding a slice” technique, see [5, Section 3.7]). The functions
v1, v2, . . . satisfy the functional equations

vj(x, y) =

{

xj + xj
∑

i≥1,i6=j−p vi(x, y) + xjyvj−p(x, y) j > p,

xj + xj
∑

i≥1 vi(x, y) j ≤ p.

We are interested in the combined generating function V (x, y) = 1 +
∑

j≥1 vj(x, y) again.
In order to find an expression for this function, we first introduce auxiliary functions
Ur(x, y) =

∑

j≥1 xrjvj(x, y). Then U0(x, y) = V (x, y) − 1, and the functional equations
stated above imply

Ur(x, y) =
∑

j≥1

xrjvj(x, y) =
∑

j≥1

xrj · xjV (x, y) +
∑

j>p

xrj(y − 1)xjvj−p(x, y)

=
xr+1

1 − xr+1
· V (x, y) + x(r+1)p(y − 1)

∑

j≥1

x(r+1)jvj(x, y)

=
xr+1

1 − xr+1
· V (x, y) + x(r+1)p(y − 1)Ur+1(x, y).

Substituting xr(r+1)p/2(y − 1)rUr(x, y) = Tr(x, y), one obtains

Tr(x, y) =
xr(r+1)p/2+(r+1)(y − 1)r

1 − xr+1
· V (x, y) + Tr+1(x, y)

with T0(x, y) = U0(x, y) = V (x, y) − 1 and thus by induction

Tr(x, y) = V (x, y) − 1 −
(

r
∑

j=1

(y − 1)j−1xj(j−1)p/2+j

1 − xj

)

V (x, y)

As r → ∞, Tr(x, y) → 0 (as a formal power series), and so we have

V (x, y) =

(

1 −
∞
∑

j=1

(y − 1)j−1xj(j−1)p/2+j

1 − xj

)−1

.

Note that one has V (x, 1) = 1−x
1−2x

, as it should be. Furthermore, one can easily determine
the first and second derivative in order to find the mean and variance:

Vy(x, 1) =
(1 − x)xp+2

(1 + x)(1 − 2x)2

and

Vyy(x, 1) =
2x2p+4(1 − x)

(1 + x)2(1 − 2x)3
+

2x3p+3(1 − x)

(1 + x + x2)(1 − 2x)2
.

Now one can read off the coefficients to obtain the following theorem:
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Theorem 5 The mean and variance of the number of p-successions in a random compo-
sition of n are given by

µn = 2−p

(

n

6
− 3p − 1

18

)

+
4

9
(−1)p

(

−1

2

)n

for n > p and

σ2
n =

(

2−p

6
− (6p + 7)2−2p

108
+

2−3p

7

)

n

−
(

(3p − 1)2−p

18
− (27p2 + 36p − 19)2−2p

324
+

(21p + 3)2−3p

49

)

+ O
(

n2−n
)

.

Furthermore, the distribution of the number of p-successions is asymptotically normal.

Proof: The mean and variance follow directly from the explicit formulae for the derivatives
of V (x, y), so it remains to prove the limit law. This, however, is essentially a consequence
of the fact that V (x, y) is the quotient of two analytic functions (within suitable regions);
see [5, Theorem IX.9]. �

It should be noted that an explicit formula for the variance can be given as well; since
it is quite lengthy, only the main terms are provided here.

Remark It is interesting to compare the mean number of successions in compositions,
which is linear in n, with the mean number of successions in partitions of integers, which

is shown in [10] to grow like

√

6

π
2

p(p+1)
n1/2 as n → ∞.

6 Conclusion

It is quite likely that all our results concerning limiting distributions, in particular the
phase transition observed in Theorem 3, hold for more general patterns: if S(k) is a
suitable collection of patterns in words over the alphabet [k], and the size of S(k) grows
linearly with k, then it is probable that the same type of phase transition occurs. The
technical details might be intricate, though (in particular the proper definition of “suitable
collection of patterns”).
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