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Abstract. The words in the title are characterized by the fact that a smaller number
must (first) appear earlier than a larger number, and that all numbers 1, . . . , k are present
(for some k). Under the assumption that the letters are drawn from a geometric distribu-
tion, the probability that a word of length n enjoys these properties is determined, both
exactly and asymptotically.

1. Introduction

For a set partition of {1, 2, . . . , n} into k blocks, a natural coding is as follows: Element
1 is in block 1, and the smallest number not in block 1 is in block 2, and the smallest
number not in blocks 1 or 2, is in block 3, etc. In this way, to every element i a number ai

is attached, namely the block in which it lies. Writing these numbers as a word a1 . . . an,
the set partition is coded in a natural way. One particular reference for this is [3].

Forgetting now about set partitions, we are talking about words where the letters are the
positive integers, and, assuming that k is the largest letter that appears in the word, then
the letters 1, . . . , k − 1 must also appear, and the word has exactly k (strict) left-to-right
maxima, which is the same as saying that, if i < j, the first appearance of i is earlier than
the first appearance of j. As one referee has kindly pointed out, such words are known as
restricted growth strings in the literature [6].

Now we assign the (geometric) probability pqi−1 (where p + q = 1) to the letter i and
consider Pn, the probability that a random word of length n has the restricted growth
property. We are thus in the context of combinatorics of geometrically distributed words, a
series of papers started with [4] and continued by the second writer as well as many others;
a recent contribution is the paper [5].

The present question is not only appealing from a combinatorial point of view (easy to
formulate but not trivial to solve) but the approach used here (with the parameter q) leads
to “richer” results, and often the instance q = 1 corresponds to the classical combinatorial
instance, especially, when the parameter is of the order statistics type.

We will prove the following theorems.
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Theorem 1. The probability Pn that a random word of length n has the restricted growth
property is (exactly) given by

Pn = p

n−1∑
j=0

(−1)j

(
n− 1

j

)
qj(p; q)j.

Here we use the (standard) notation (x; q)m = (1− x)(1− xq) . . . (1− xqm−1). We will
also need the limit of it as m →∞, denoted by (x; q)∞, as well as the Gaussian q-binomial
coefficients [

n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k

.

We need the following standard formulæ:

N∑
k=0

[
N

k

]
q

(−1)kq(
k
2)xk = (x; q)N ,

1

(w; q)∞
=

∑
n≥0

wn

(q; q)n

.

All this can be found in [1].
The asymptotic evaluation leads to our second theorem.

Theorem 2. The probability that a random word of length n has the restricted growth
property is asymptotically given by

Pn ∼
(p; q)∞
L(q; q)∞

Γ
( log p

log q

)
n−

log p
log q + n−

log p
log q Φ(logQ n),

where Φ(x) is a 1-periodic function with mean zero. The abbreviations Q = 1/q and
L = log Q are used. The function is given by its Fourier series

Φ(x) =
(p; q)∞
L(q; q)∞

∑
k 6=0

Γ
( log p

log q
+

2πik

L

)
e−2πikx.

In the symmetric case p = q, this looks better:

1

L
n−1 + n−1Φ(log2 n).

2. Analysis

We use the natural decomposition

1{≤ 1}∗2{≤ 2}∗3{≤ 3}∗ . . . k{≤ k}∗,
which translates into

zp

1− (1− q)z

zpq

1− (1− q2)z
. . .

zpqk−1

1− (1− qk)z
= zkpkq(

k
2)

k∏
j=1

1

1− (1− qj)z
.
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This has to be summed over all k, to get the generating function of the sought probabilities
(Pn is the coefficient of zn in this series):

∑
k≥1

zkpkq(
k
2)

k∏
j=1

1

1− (1− qj)z
.

Substituting z = w/(w − 1), this becomes

∑
k≥1

wk(−1)kpkq(
k
2)

k∏
j=1

1

1− wqj
=

∑
k≥1

wk(−1)kpkq(
k
2)

(wq; q)k

.

Reading off coefficients:

Pn = [zn]
∑
k≥1

wk(−1)kpkq(
k
2)

(wq; q)k

=
1

2πi

∮ ∑
k≥1

dz

zn+1

wk(−1)kpkq(
k
2)

(wq; q)k

by Cauchy’s integral formula

=
1

2πi

∮ ∑
k≥1

dw(1− w)n−1

wn+1

wk(−1)n−kpkq(
k
2)

(wq; q)k

=
n∑

k=1

[wn−k](1− w)n−1 (−1)n−kpkq(
k
2)

(wq; q)k

=
n∑

k=1

n−1∑
j=0

(
n− 1

j

)
(−1)j[wn−k−j]

(−1)n−kpkq(
k
2)

(wq; q)k

=
n∑

k=1

n−1∑
j=0

(
n− 1

j

)
(−1)n−k−jpkq(

k
2)

[
n− j − 1

k − 1

]
q

qn−k−j the known expansion

of the denominator

= p

n−1∑
j=0

(
n− 1

j

)
qn−j−1(−1)n−j−1

n−j−1∑
k=0

(−1)kpkq(
k
2)

[
n− j − 1

k

]
q

= p

n−1∑
j=0

(
n− 1

j

)
qn−j−1(−1)n−j−1(p; q)n−j−1

the sum is known

as Rothe’s sum

= p
n−1∑
j=0

(
n− 1

j

)
qj(−1)j(p; q)j.

Is there a more direct way to prove this formula?
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Here is an example for n = 3; the words enjoying the restricted growth property are
111, 112, 121, 122, 123, and they appear with probabilities p3, p3q, p3q, p3q2, p3q3. And

p3 +p3q+p3q+p3q2 +p3q3 = p
2∑

j=0

(
2

j

)
qj(−1)j(p; q)j = p

(
1−2q(1−p)+q2(1−p)(1−pq)

)
.

For the asymptotic evaluation, we use the following integral representation as in [2]:

p
n−1∑
j=0

(−1)j

(
n− 1

j

)
qj(p; q)j =

−p

2πi

∫
C
qz(p; q)z

Γ(n)Γ(−z)

Γ(n− z)
dz.

Here, C enclosed the poles 0, 1, . . . , n− 1 and no others, and the interpretation of (p; q)z is

(p; q)z =
(p; q)∞

(pqz; q)∞
.

For the readers’ convenience we note that n! = Γ(n + 1), and thus

Γ(n)Γ(−z)

Γ(n− z)
=

Γ(n)

(n− z − 1)(n− z − 2) · · · (−z)
=

(−1)n(n− 1)!

z(z − 1) · · · (z + 1− n)
.

Furthermore, the residue of this expression at z = k is

(−1)n(n− 1)!

k(k − 1) · · · 1 · (−1) · · · (k + 1− n)
=

(−1)k−1(n− 1)!

k!(n− 1− k)!
.

To get asymptotics, we extend the contour of integration and have to consider the
residues at the extra poles of

pqz(p; q)∞
(1− pqz)(pqz+1; q)∞

Γ(n)Γ(−z)

Γ(n− z)
.

The poles with largest real part leading to the dominant contribution are at

z = − log p

log q
+

2πik

log q
, for k ∈ Z.

For k = 0 we get the interesting term, and the others define a small fluctuation around
this value. We find:

pq−
log p
log q

+ 2πik
log q (p; q)∞

L(pq1− log p
log q

− 2πik
L ; q)∞

Γ(n)Γ( log p
log q

+ 2πik
L

)

Γ(n + log p
log q

+ 2πik
L

)
=

(p; q)∞

L(q1− 2πik
L ; q)∞

Γ(n)Γ( log p
log q

+ 2πik
L

)

Γ(n + log p
log q

+ 2πik
L

)

∼
(p; q)∞Γ( log p

log q
+ 2πik

L
)

L(q; q)∞
n−

log p
log q

− 2πik
L .

The term k = 0 leads to
(p; q)∞Γ( log p

log q
)

L(q; q)∞
n−

log p
log q

and the other ones to

n−
log p
log q Φ(logQ n),
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where Φ(x) is a 1-periodic function with mean zero. Note that

pq−
log p
log q

+ 2πik
log q = 1,

which was used in these computations.

Acknowledgment. Thanks are due to a referee who spotted a fundamental error in an
earlier version.
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