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KAMILLA OLIVER AND HELMUT PRODINGER

ABSTRACT. The words in the title are characterized by the fact that a smaller number
must (first) appear earlier than a larger number, and that all numbers 1,. ..,k are present
(for some k). Under the assumption that the letters are drawn from a geometric distribu-
tion, the probability that a word of length n enjoys these properties is determined, both
exactly and asymptotically.

1. INTRODUCTION

For a set partition of {1,2,...,n} into k blocks, a natural coding is as follows: Element
1 is in block 1, and the smallest number not in block 1 is in block 2, and the smallest
number not in blocks 1 or 2, is in block 3, etc. In this way, to every element ¢ a number a;
is attached, namely the block in which it lies. Writing these numbers as a word a; . .. ay,
the set partition is coded in a natural way. One particular reference for this is [3].

Forgetting now about set partitions, we are talking about words where the letters are the
positive integers, and, assuming that £ is the largest letter that appears in the word, then
the letters 1,...,k — 1 must also appear, and the word has exactly k (strict) left-to-right
maxima, which is the same as saying that, if 7 < j, the first appearance of i is earlier than
the first appearance of j. As one referee has kindly pointed out, such words are known as
restricted growth strings in the literature [6].

Now we assign the (geometric) probability pg"~! (where p + ¢ = 1) to the letter 7 and
consider P,, the probability that a random word of length n has the restricted growth
property. We are thus in the context of combinatorics of geometrically distributed words, a
series of papers started with [4] and continued by the second writer as well as many others;
a recent contribution is the paper [5].

The present question is not only appealing from a combinatorial point of view (easy to
formulate but not trivial to solve) but the approach used here (with the parameter ¢) leads
to “richer” results, and often the instance ¢ = 1 corresponds to the classical combinatorial
instance, especially, when the parameter is of the order statistics type.

We will prove the following theorems.
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Theorem 1. The probability P, that a random word of length n has the restricted growth
property is (exactly) given by

P, = pg(—l)j (n J_ 1) ¢ (p;q);.

Here we use the (standard) notation (x;q), = (1 —2)(1 —zq)...(1 — xg™ ). We will
also need the limit of it as m — oo, denoted by (z;¢)s, as well as the Gaussian ¢g-binomial
coefficients

m —_ (@D
kl, (@ OG Dok
We need the following standard formulee:

i [ﬂq(—l)kq(g)xk = (z;q)w,

k=0
n
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n>0

All this can be found in [1].
The asymptotic evaluation leads to our second theorem.

Theorem 2. The probability that a random word of length n has the restricted growth
property is asymptotically given by

(P: @)oo /lOogp\ _lozp  _loxp
F( )n loga 41 lza P(logyn),
L(q;q)oo \logg (logg n)

where ®(z) is a I1-periodic function with mean zero. The abbreviations Q = 1/q and
L =logQ are used. The function is given by its Fourier series
Q) oo 1 2mik ,
(I)(I) — (p7 Q> ( ogp + m >e—2mkx.
L(¢:q)o0 =5 \logg L

P, ~

In the symmetric case p = ¢, this looks better:

1
Zn_l +n " '®d(log, n).

2. ANALYSIS
We use the natural decomposition
< 1P 2{< 2} 3{< 3} .. . K{< k}7,

which translates into

k—1
zp g g _ pg(®) 11 1

1—-(1-¢)z1—(1-¢*>)z  1-(1—¢g*)z Fll—(l—qﬂ')z'
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This has to be summed over all &, to get the generating function of the sought probabilities
(P, is the coefficient of 2" in this series):

k

RLTIC)) g —
k>1 j=1
Substituting z = w/(w — 1), this becomes

w 5 I G VA
2wt Hl—wqj (wg; O

k>1 j=1 k>1

Reading off coefficients:

P, = [Zn] Z wk(_l)kpkq(z)

= (wgah
: fz A D) s integral formu
- auchy’s integral formula
27 = 2 (wq; )k Y Y &
1 ]42 dw(1 —w)" L wk(=1)"" kp’“q( )
T o n+1 .
mi ) s W (wq; q)x
— - [wnfk](l o w)nfl( 1)n kpkq( )
— (wg; @
-1
"3 —1 . (=) k()
DB M (e (ST
e\ (wg; q)
- nontl g ( 1)n_k_j k(5|7 —J—=1 Lk the known expansion
- i SN P k=11, of the denominator
n—1 n— 1 n,j,l n— _ 1
:pZ( . )q"—f' Wt 3T (- 1)pq(>{ IJ{ }
=0 N 7 poary g
n—1 .
n—1 the sum is known
— n—j—1 —1\ i 1
pjzo ( J )q b Pi Dn—jr as Rothe’s sum
n—1
n—1\ .
=p ( . )q]( 1)’ (p;q)
i=o N/

Is there a more direct way to prove this formula?
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Here is an example for n = 3; the words enjoying the restricted growth property are
111,112,121, 122,123, and they appear with probabilities p?, p3q, p3q, p?¢®, p*¢®. And

PP+ rPe+ PP pie = pz < ) 1(pq); = p(1—2¢(1—p)+¢*(1—p)(1—pq)).
For the asymptotic evaluatlon, we use the following integral representation as in [2]:
n—1\ —p L(n)I'(—=2)
Jl(m ). — L Z (0. dz.
pz ( . )q(p,q)] QM./CQ(p,q)Z )

Here, C enclosed the poles 0,1,...,n— 1 and no others, and the interpretation of (p;q), is

(P @)oo
Pq)= T~
P = G
For the readers’ convenience we note that n! = I'(n 4 1), and thus
F(n)I'(-2) ['(n) B (=1)"(n —1)!

'n—2) (—z—-1)n—-2-2)--(—2) z2(z—1)--(z+1-n)
Furthermore, the residue of this expression at z = k is
(=1)"(n —1)! (—=1)*(n —1)!
kk—1) 1 (=1 (k+1—n)  kl(n—1—k)"
To get asymptotics, we extend the contour of integration and have to consider the
residues at the extra poles of

P (Pid)ee  T(n)I(—2)
(1 = pa*)(pg*t; @)os T'(n —2)
The poles with largest real part leading to the dominant contribution are at

1 27
Z:_ng+ Mk, for keZ.

logg loggq
For k = 0 we get the interesting term, and the others define a small fluctuation around

this value. We find:

lo i o i o i
pg B (prg)ee TOTGES 55 () FOUT(EES + 55
L(pq izgg 2Tk’q)oo F(n + iziz + 27rzk) L(q1—27rsz7q) F(n + igiz + 27mk)

(P @)oo (1282 + 2mk) - i

logq n logaq L

L(¢; ¢)o

The term k£ = 0 leads to

and the other ones to
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where ®(x) is a 1-periodic function with mean zero. Note that

_logp | 2mik

pq Tesa 'logq = 1,

which was used in these computations.

Acknowledgment. Thanks are due to a referee who spotted a fundamental error in an
earlier version.

REFERENCES

[1] G. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, 1999.

[2] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and Rice’s integrals.
Theoretical Computer Science, 144:101-124, 1995.

[3] A. Knopfmacher, T. Mansour, and S. Wagner. Records in set partitions. Electronic J. of Combinatorics,
17:R109, 2010.

[4] H. Prodinger. Combinatorics of geometrically distributed random variables: Left-to-right maxima.
Discrete Mathematics, 153:253-270, 1996.

[6] H. Prodinger. Records in geometrically distributed words: sum of positions. Applicable Analysis and
Discrete Mathematics, 2:234—240, 2008.

[6] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.

KaMiLLA OLIVER, 91052 ERLANGEN, GERMANY
E-mail address: olikamilla@gmail.com

HELMUT PRODINGER, DEPARTMENT OF MATHEMATICAL SCIENCES, STELLENBOSCH UNIVERSITY,
7602 STELLENBOSCH, SOUTH AFRICA
E-mail address: hproding@sun.ac.za



