WORDS CODING SET PARTITIONS

KAMILLA OLIVER AND HELMUT PRODINGER

Abstract

The words in the title are characterized by the fact that a smaller number must (first) appear earlier than a larger number, and that all numbers $1, \ldots, k$ are present (for some k). Under the assumption that the letters are drawn from a geometric distribution, the probability that a word of length n enjoys these properties is determined, both exactly and asymptotically.

1. Introduction

For a set partition of $\{1,2, \ldots, n\}$ into k blocks, a natural coding is as follows: Element 1 is in block 1, and the smallest number not in block 1 is in block 2, and the smallest number not in blocks 1 or 2 , is in block 3, etc. In this way, to every element i a number a_{i} is attached, namely the block in which it lies. Writing these numbers as a word $a_{1} \ldots a_{n}$, the set partition is coded in a natural way. One particular reference for this is [3].

Forgetting now about set partitions, we are talking about words where the letters are the positive integers, and, assuming that k is the largest letter that appears in the word, then the letters $1, \ldots, k-1$ must also appear, and the word has exactly k (strict) left-to-right maxima, which is the same as saying that, if $i<j$, the first appearance of i is earlier than the first appearance of j. As one referee has kindly pointed out, such words are known as restricted growth strings in the literature [6].

Now we assign the (geometric) probability $p q^{i-1}$ (where $p+q=1$) to the letter i and consider P_{n}, the probability that a random word of length n has the restricted growth property. We are thus in the context of combinatorics of geometrically distributed words, a series of papers started with [4] and continued by the second writer as well as many others; a recent contribution is the paper [5].

The present question is not only appealing from a combinatorial point of view (easy to formulate but not trivial to solve) but the approach used here (with the parameter q) leads to "richer" results, and often the instance $q=1$ corresponds to the classical combinatorial instance, especially, when the parameter is of the order statistics type.

We will prove the following theorems.

[^0]Theorem 1. The probability P_{n} that a random word of length n has the restricted growth property is (exactly) given by

$$
P_{n}=p \sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} q^{j}(p ; q)_{j} .
$$

Here we use the (standard) notation $(x ; q)_{m}=(1-x)(1-x q) \ldots\left(1-x q^{m-1}\right)$. We will also need the limit of it as $m \rightarrow \infty$, denoted by $(x ; q)_{\infty}$, as well as the Gaussian q-binomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} .
$$

We need the following standard formulæ:

$$
\begin{aligned}
\sum_{k=0}^{N}\left[\begin{array}{c}
N \\
k
\end{array}\right]_{q}(-1)^{k} q^{\binom{k}{2}} x^{k} & =(x ; q)_{N} \\
\frac{1}{(w ; q)_{\infty}} & =\sum_{n \geq 0} \frac{w^{n}}{(q ; q)_{n}}
\end{aligned}
$$

All this can be found in [1].
The asymptotic evaluation leads to our second theorem.
Theorem 2. The probability that a random word of length n has the restricted growth property is asymptotically given by

$$
P_{n} \sim \frac{(p ; q)_{\infty}}{L(q ; q)_{\infty}} \Gamma\left(\frac{\log p}{\log q}\right) n^{-\frac{\log p}{\log q}}+n^{-\frac{\log p}{\log q}} \Phi\left(\log _{Q} n\right)
$$

where $\Phi(x)$ is a 1-periodic function with mean zero. The abbreviations $Q=1 / q$ and $L=\log Q$ are used. The function is given by its Fourier series

$$
\Phi(x)=\frac{(p ; q)_{\infty}}{L(q ; q)_{\infty}} \sum_{k \neq 0} \Gamma\left(\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right) e^{-2 \pi i k x}
$$

In the symmetric case $p=q$, this looks better:

$$
\frac{1}{L} n^{-1}+n^{-1} \Phi\left(\log _{2} n\right)
$$

2. Analysis

We use the natural decomposition

$$
1\{\leq 1\}^{*} 2\{\leq 2\}^{*} 3\{\leq 3\}^{*} \ldots k\{\leq k\}^{*},
$$

which translates into

$$
\frac{z p}{1-(1-q) z} \frac{z p q}{1-\left(1-q^{2}\right) z} \cdots \frac{z p q^{k-1}}{1-\left(1-q^{k}\right) z}=z^{k} p^{k} q^{\binom{k}{2}} \prod_{j=1}^{k} \frac{1}{1-\left(1-q^{j}\right) z} .
$$

This has to be summed over all k, to get the generating function of the sought probabilities (P_{n} is the coefficient of z^{n} in this series):

$$
\sum_{k \geq 1} z^{k} p^{k} q^{\binom{k}{2}} \prod_{j=1}^{k} \frac{1}{1-\left(1-q^{j}\right) z}
$$

Substituting $z=w /(w-1)$, this becomes

$$
\sum_{k \geq 1} w^{k}(-1)^{k} p^{k} q^{\binom{k}{2}} \prod_{j=1}^{k} \frac{1}{1-w q^{j}}=\sum_{k \geq 1} \frac{w^{k}(-1)^{k} p^{k} q^{\binom{k}{2}}}{(w q ; q)_{k}}
$$

Reading off coefficients:

$$
\begin{aligned}
P_{n} & =\left[z^{n}\right] \sum_{k \geq 1} \frac{\left.w^{k}(-1)^{k} p^{k} q^{k} \begin{array}{c}
k \\
2
\end{array}\right)}{(w q ; q)_{k}} \\
& =\frac{1}{2 \pi i} \oint \sum_{k \geq 1} \frac{d z}{z^{n+1}} \frac{w^{k}(-1)^{k} p^{k} q^{\binom{k}{2}}}{(w q ; q)_{k}} \quad \text { by Cauchy's integral formula } \\
& =\frac{1}{2 \pi i} \oint \sum_{k \geq 1} \frac{d w(1-w)^{n-1}}{w^{n+1}} \frac{w^{k}(-1)^{n-k} p^{k} q^{\binom{k}{2}}}{(w q ; q)_{k}} \\
& =\sum_{k=1}^{n}\left[w^{n-k}\right](1-w)^{n-1} \frac{(-1)^{n-k} p^{k} q^{\binom{k}{2}}}{(w q ; q)_{k}} \\
& =\sum_{k=1}^{n} \sum_{j=0}^{n-1}\binom{n-1}{j}(-1)^{j}\left[w^{n-k-j}\right] \frac{(-1)^{n-k} p^{k} q^{\binom{k}{2}}}{(w q ; q)_{k}}
\end{aligned}
$$

$$
=\sum_{k=1}^{n} \sum_{j=0}^{n-1}\binom{n-1}{j}(-1)^{n-k-j} p^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n-j-1 \\
k-1
\end{array}\right]_{q} q^{n-k-j} \quad \begin{gathered}
\text { the known expansion } \\
\text { of the denominator }
\end{gathered}
$$

$$
=p \sum_{j=0}^{n-1}\binom{n-1}{j} q^{n-j-1}(-1)^{n-j-1} \sum_{k=0}^{n-j-1}(-1)^{k} p^{k} q^{\binom{k}{2}}\left[\begin{array}{c}
n-j-1 \\
k
\end{array}\right]_{q}
$$

$$
=p \sum_{j=0}^{n-1}\binom{n-1}{j} q^{n-j-1}(-1)^{n-j-1}(p ; q)_{n-j-1} \quad \text { the sum is known } \quad \text { as Rothe's sum }
$$

$$
=p \sum_{j=0}^{n-1}\binom{n-1}{j} q^{j}(-1)^{j}(p ; q)_{j} .
$$

Is there a more direct way to prove this formula?

Here is an example for $n=3$; the words enjoying the restricted growth property are $111,112,121,122,123$, and they appear with probabilities $p^{3}, p^{3} q, p^{3} q, p^{3} q^{2}, p^{3} q^{3}$. And $p^{3}+p^{3} q+p^{3} q+p^{3} q^{2}+p^{3} q^{3}=p \sum_{j=0}^{2}\binom{2}{j} q^{j}(-1)^{j}(p ; q)_{j}=p\left(1-2 q(1-p)+q^{2}(1-p)(1-p q)\right)$.

For the asymptotic evaluation, we use the following integral representation as in [2]:

$$
p \sum_{j=0}^{n-1}(-1)^{j}\binom{n-1}{j} q^{j}(p ; q)_{j}=\frac{-p}{2 \pi i} \int_{\mathcal{C}} q^{z}(p ; q)_{z} \frac{\Gamma(n) \Gamma(-z)}{\Gamma(n-z)} d z
$$

Here, \mathcal{C} enclosed the poles $0,1, \ldots, n-1$ and no others, and the interpretation of $(p ; q)_{z}$ is

$$
(p ; q)_{z}=\frac{(p ; q)_{\infty}}{\left(p q^{z} ; q\right)_{\infty}}
$$

For the readers' convenience we note that $n!=\Gamma(n+1)$, and thus

$$
\frac{\Gamma(n) \Gamma(-z)}{\Gamma(n-z)}=\frac{\Gamma(n)}{(n-z-1)(n-z-2) \cdots(-z)}=\frac{(-1)^{n}(n-1)!}{z(z-1) \cdots(z+1-n)}
$$

Furthermore, the residue of this expression at $z=k$ is

$$
\frac{(-1)^{n}(n-1)!}{k(k-1) \cdots 1 \cdot(-1) \cdots(k+1-n)}=\frac{(-1)^{k-1}(n-1)!}{k!(n-1-k)!}
$$

To get asymptotics, we extend the contour of integration and have to consider the residues at the extra poles of

$$
\frac{p q^{z}(p ; q)_{\infty}}{\left(1-p q^{z}\right)\left(p q^{z+1} ; q\right)_{\infty}} \frac{\Gamma(n) \Gamma(-z)}{\Gamma(n-z)}
$$

The poles with largest real part leading to the dominant contribution are at

$$
z=-\frac{\log p}{\log q}+\frac{2 \pi i k}{\log q}, \quad \text { for } \quad k \in \mathbb{Z}
$$

For $k=0$ we get the interesting term, and the others define a small fluctuation around this value. We find:

$$
\begin{aligned}
\frac{p q^{-\frac{\log p}{\log q}+\frac{2 \pi i k}{\log q}}(p ; q)_{\infty}}{L\left(p q^{1-\frac{\log p}{\log q}-\frac{2 \pi i k}{L}} ; q\right)_{\infty}} \frac{\Gamma(n) \Gamma\left(\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right)}{\Gamma\left(n+\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right)} & =\frac{(p ; q)_{\infty}}{L\left(q^{1-\frac{2 \pi i k}{L}} ; q\right)_{\infty}} \frac{\Gamma(n) \Gamma\left(\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right)}{\Gamma\left(n+\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right)} \\
& \sim \frac{(p ; q)_{\infty} \Gamma\left(\frac{\log p}{\log q}+\frac{2 \pi i k}{L}\right)}{L(q ; q)_{\infty}} n^{-\frac{\log p}{\log q}-\frac{2 \pi i k}{L}}
\end{aligned}
$$

The term $k=0$ leads to

$$
\frac{(p ; q)_{\infty} \Gamma\left(\frac{\log p}{\log q}\right)}{L(q ; q)_{\infty}} n^{-\frac{\log p}{\log q}}
$$

and the other ones to

$$
n^{-\frac{\log p}{\log q}} \Phi\left(\log _{Q} n\right)
$$

where $\Phi(x)$ is a 1-periodic function with mean zero. Note that

$$
p q^{-\frac{\log p}{\log q}+\frac{2 \pi i k}{\log q}}=1,
$$

which was used in these computations.
Acknowledgment. Thanks are due to a referee who spotted a fundamental error in an earlier version.

References

[1] G. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1999.
[2] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite differences and Rice's integrals. Theoretical Computer Science, 144:101-124, 1995.
[3] A. Knopfmacher, T. Mansour, and S. Wagner. Records in set partitions. Electronic J. of Combinatorics, 17:R109, 2010.
[4] H. Prodinger. Combinatorics of geometrically distributed random variables: Left-to-right maxima. Discrete Mathematics, 153:253-270, 1996.
[5] H. Prodinger. Records in geometrically distributed words: sum of positions. Applicable Analysis and Discrete Mathematics, 2:234-240, 2008.
[6] D. Stanton and D. White. Constructive Combinatorics. Springer, 1986.
Kamilla Oliver, 91052 Erlangen, Germany
E-mail address: olikamilla@gmail.com
Helmut Prodinger, Department of Mathematical Sciences, Stellenbosch University, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

[^0]: Date: February 4, 2011.
 This material is based upon work supported by the National Research Foundation of South Africa under grant number 2053748.

