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THE NUMBER OF WINNERS IN A DISCRETE
GEOMETRICALLY DISTRIBUTED SAMPLE
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In this tutorial, statistics on the number of people who tie for first
place are considered. It is demonstrated that the so-called Rice's method
from the calculus of finite differences is a very convenient tool both to
rederive known results as well as to gain new ones with ease .

Let the random variable G be geometrically distributed . That is, P{G = k}
= pqk-1, with q = 1- p. Also, assume that n independent copies are given .
Finally, let X count the number of random variables with highest value. A
popular realization of this situation is to consider n "players" who indepen-
dently toss coins until each of them sees the first head . In this interpretation,
X is the number of players who gain their respective heads in the very last
round of the game, that is, the "winners" of the game. In [1] the probability
distribution of X, the expectation EE X of X and the asymptotic behavior of
P{X = 1} (probability of a single winner) for n - were to be determined. In
the solution [2] it was remarked that-surprisingly-this probability does
not converge as n -> 0o but rather has an oscillating behavior . At the same
time, Eisenberg, Stengle and Strang [5] discussed this problem and related
topics, exhibiting the structure of the periodic fluctuation, for which an
explicit Fourier expansion was given. Also about this time, Brands, Steutel
and Wilms [4] came independently to roughly the same results. A recent
paper by Baryshnikov, Eisenberg and Stengle [3] deals with the existence of
the limiting probability of a tie for first place .

In fact, a fluctuating behavior in asymptotic expansions is not at all
uncommon. There are numerous results of that type, for example, in the
analysis of divide-and-conquer recursions [7, 8, 16] or digital sums [6], that
play a prominent role in the probabilistic analysis of algorithms .

Our aim in this paper is to some extent tutorial : the asymptotic technique
that yields the Fourier expansions of the fluctuating functions very comfort-
ably is called "Rice's method" (see the recent survey [9]) . In order to convince
the reader of the advantages of this method, we will rederive a result on the
initially mentioned problem in the sequel, and afterwards present some new
results concerning higher moments of distribution as well as the number of
persons reaching a specified level beyond the winner(s).
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Let us abbreviate Q 1/q and L log Q. Also, let pm denote the
probability Pm = P{X = m}, that is, the probability of having m winners
(amongst n players) . Then

(1)

	

P,,, =P°'(m' Lr ~I(j-1)m ( 1l j,

(2)

( 4 )

(5)

pm

qj-1 )n-m

This follows from the observation that m out of n people have a (winning)
value j, while the other ones have a smaller value . Now we set N n - m,
expand the binomial and sum over j to get the alternative formula

N N
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1
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k=o k

	

1 Q

The key point in analyzing this alternating sum asymptotically is the follow-
ing lemma.

LEMMA 1([9]) . Let f(z) be a function that is analytic on [n o ,+ x[ . Assume
that f(z) is meromorphic in the whole of C and analytic on = U .
where the y~ are concentric circles whose radius tends to 00 Let f(z) be of
polynomial growth on f . Then, for N large enough,

N N
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where
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[N ;z] z(z-1) • • • ( z-N)

	

I'(N+1-z)

and the sum is extended to all poles not on [n0, + x[ .

The following proposition collects the asymptotic results concerning the
distribution of the number of winners among n players . We demonstrate the
use of Rice's method by giving our alternative proof for the asymptotics of the
probabilities, mention the (known) expectation and derive the (new) asymp-
totics of the variance .

PROPOSITION 1 . Let X be the random variable "number of winners among
n players" as described above. Then

_ P{x = m}
1 p "Z

	

p "`
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Lm + L Sm(1ogQn)-h

9
n

E n = EX= q L~1+S1(logQ n)) +(-)

m fixed, n -> 00 ,



and

(s)

where 6m(X) and 7 1(x) are continuous periodic functions of period 1, mean 0
and small amplitude .

PROOF . In order to prove (4), we apply the lemma (with no = 0) to
expression (2) . In this instance f(z) = 1/(1- Q -z-m) has poles at z =
- m + Xj, with x j = 2 jir i/L, and is bounded on concentric circles Cj about
the origin passing through the points

(2j+1)iri
-m±

	

L

	

= 1, 2, . . . .

Therefore we only have to consider the residues of

1
[N; z] 1 Q- z - m at z = - m + X3 .

The computation of the residues is simple ;

FN+1)r(m-x) 1
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whence we have [after multiplication by the factor pm(n) and going back to
n > m instead of N > 1] the formulas

1 pm

	

F(n + 1)
(7)
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n>m

where according to the previous remarks-the series stands for the Cauchy
principal value .

Using Stirling's formula for the approximation of the F-functions, we find
that

F(n + 1 -x3 )
so that, for n getting large, the series converges to the Fourier expansion of a
periodic function in log Q n . Pulling out the term with index j = 0 (the
"mean") and denoting the remaining periodic fluctuation (of mean 0),

l
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we gain formula (4).
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It is interesting to note that the alternating sum (2) can also be rewritten
using the partial fraction decomposition of the meromorphic function 1/(1-
qz+m), namely,

(8)

(9)

1 _ q z+m
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1
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2

2

Sn, m

= 2Q 2p2

(Compare [11], 7 .10.) Again, the sum stands for the Cauchy principal value .
The usual argument to derive (8) is to compute the sum of the principal parts
of the function and to show that the difference between this sum and the
function-which has to be entire is bounded, and thus a constant . Inserting
(8) into (2), we find
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(compare [101, (5.41)), so that (remembering N = n - m)
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In order to get (5), we observe that En = Q(p 1 - p6n,1) as was already
reported in [2] . Let us now engage in the proof of (6) . For this we compute the
second factorial moment Mn for n > 2 :



The variance is obtained in the usual way by computing Vn = Mn + En - E, .
Hence
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This time
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has (integral) mean different from 0! While this quantity is quite small, it can
be extracted using the methods described in [12], and we find the alternative
formula (6) of the proposition . 0

There is a nice way to derive the explicit forms of the expectation and the
second factorial moment, using (probability) generating functions . Let the
coefficient of z k in Fn(z) denote the probability that n players produce k
winners. We get the following recursion :

(12)

	

Fn ( z)
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(n)pn-kg
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kFk(z) + p nz n ,

	

n 1.

It is convenient to set F0(z) = 1. This recursion is almost self-explanatory .
When, at a certain level, the remaining players all fail, we label each of them
by a "z" and leave the recursion (equivalently we might think of z as the
probability of an event independent of the game) . The expectation En is
obtained via F,(1) ; therefore

n
En = ~ n p n-kg kEk +np n ,

	

n >_ l .
k=1

( k )

Defining the exponential generating function E(z) = En , En z'/n!, we ob-
tain

E(z) = epzE(gz) + pzep z .

Using the "Poisson transform"

this simplifies to

qz) + pze _ qz .

Equating coefficients we see that, for n > 1,

np

	

n_1 g nEn =
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z n
E(z) = e-ZE(z) _ n .n>_1
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and furthermore, for n > 1,

n
k )Ek

k

where the first sum runs over all mo
m o - . . .- md,

k 111 ( _ l)

n

k~ ( k) q (_l)k Qk - 1

Qk+1 - 1

which coincides with the formula in [2] . For the second factorial moment we
differentiate twice and evaluate at z = 1. An almost identical computation
gives the same expression that we obtained already.

This approach was used by Knuth in [15] under the name "binomial
transform" and subsequently used by many people (see, e.g., [17]) .

Finally, we want to produce some additional new results which shed some
additional light on the original question about the number of winners .

Assume that the winners have reached the level j . We are interested in the
number of players who reached the level j - d, where d is a parameter.
(d = 0 is the case that was just considered.) Call the random variable in
question Xd . Then we have the following proposition .

PROPOSITION 2 . Let Xd denote the random variable "number of players
who reach level d below the winners ." Then
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PROOF. The formula for the probabilities is self-explanatory [compare the
comments on formula (1)] . The expected value is just the sum of and times
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this quantity. We get
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This formula holds only for d >- 1 . Since
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and, because the extra terms are exponentially small, we can use the asymp-
totic result for En° ~ and have

E~' =
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+ exponentially small terms in n
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>

from which (14) is immediate using (4). The second factorial moment Mnd ~ for
d>- 1 is computed analogously as (with Mn° ~ = Mn)
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Thus formula (15) gives us the asymptotics for the variance . 0
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