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Abstract. We analyze a fringe tree parameter w in a variety of settings, utilizing a variety of
methods from the analysis of algorithms and data structures.

Given a tree t and one of its leaves a, the w(t, a) parameter denotes the number of internal
nodes in the subtree rooted at a’s father. The closely-related w(t, a) parameter denotes the
number of leaves, excluding a, in the subtree rooted at a’s father. We define the cumulative
w parameter as W(t) =

∑
a w(t, a), i.e., as the sum of w(t, a) over all leaves a of t. The

w parameter not only plays an important rôle in the analysis of the Lempel-Ziv ’77 data
compression algorithm, but it is captivating from a combinatorial viewpoint too.

In this report, we determine the asymptotic behavior of the w and W parameters on a variety
of types of trees. In particular, we analyze simply generated trees, recursive trees, binary search
trees, digital search trees, tries and Patricia tries.

The final section of this report briefly summarizes and improves the previously known results
about the w parameter’s behavior on tries and suffix trees, originally published in one author’s
thesis (see [War05], [WS05], [LSW07]).

This survey of new results about the w parameter is very instructive since a variety of
different combinatorial methods are used in tandem to carry out the analysis.

1. Introduction

1.1. General remarks. Rooted planar trees are important combinatorial objects. On the
one hand, they have a simple (global) structure and admit an easy recursive description, but
nevertheless they usually have a nontrivial and combinatorially interesting local structure.
Their simplicity makes the study of tree characteristics amenable to a wealth of methods from
analytic combinatorics and probability theory. Trees play an important rôle in biology and
computer science applications. For instance, trees are used in modelling the spread of epidemics
and in the investigation of relationships of biological species. In computer science, they serve
as data structures and are used in the analysis of the worst- and/or average-case behavior of
algorithms.

The original idea of this paper was to present a survey of the asymptotic behavior of tree
parameters for various tree classes. We are dealing with random trees, assuming that trees are
selected uniformly from the set of all trees with n vertices. Our interest lies in the asymptotic
behavior of tree parameters as n tends to infinity.
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Due to the rising importance of computer science during the last century, trees have been
studied intensively for several decades. So there is a vast literature on tree parameters which
makes a comprehensive study impossible. Thus we decided to focus on one fringe tree parameter
as demonstration object. The parameter we chose, called the w parameter and described below,
originates in the study of data compression algorithms. One advantage of this parameter is that
it is easy to describe, yet sufficiently rich in complexity. A comprehensive study of its behavior
in several tree classes requires the utilization of a variety of different methods, including: the
symbolic method to set up generating functions, singularity analysis, asymptotic solutions
of functional equations, the Mellin transform, probability theoretic arguments ranging from
elementary to Poissonization.

1.2. The w parameter and its variants. For each leaf a in a tree t, the w(t, a) parameter
denotes the number of internal nodes in the subtree rooted at a’s father. Similarly, the w
parameter denotes the number of leaves, excluding a, in such a subtree. In a binary tree, for
instance, where every branching node has exactly two children, we have obviously w(t, a) =
w(t, a). We also study the cumulative W(t) parameter of a tree t, defined as W(t) :=

∑
a w(t, a),

i.e., the sum of w(t, a) over all leaves a in the tree t.
The w and W parameters are well-defined on all rooted trees, i.e., on trees that have a

specified root. We do not need a tree to be planar (i.e., embedded in the plane) in order to
identify the w(t, a) parameter associated with leaf a.

The w parameter was originally applied to uncompressed suffix trees in a study about the
Lempel-Ziv ’77 data compression algorithm. In particular, [War05], [WS05], [LSW07] discusses
the behavior of the w parameter in both suffix trees and also in tries built over independent
strings. On the other hand, the combinatorial aspects of the w parameter are very appealing
in their own right.

The w parameter contains local information about the fringe of a tree. The w parameter
does not increase as the total number of nodes in the tree increases. Instead, we expect the w
parameter to exhibit a discrete limit law.

1.3. Example. We give an early example of a tree, depicted in Figure 1, to illustrate and
clarify the definition of the w(t, a) and W(t) parameters. The tree is a planar tree; in other
words, it has a natural embedding in the plane, so its leaves can be counted from left to right.
For this reason, we numbered the 14 leaf nodes from 1 to 14, reading left to right around the
fringe of the tree. In this example tree t, the subtree rooted at node 1’s father is the entire tree,
which contains 14 nodes (in fact, node 1’s father is the root), so w(t, 1) = 14. Also, w(t, 2) = 7,
since the subtree rooted at node 2’s father contains 7 nodes. Similarly, we compute

a 1 2 3 4 5 6 7 8 9 10
w(t, a) 14 7 4 1 1 1 5 1 1 1

1.4. Plan of the paper. In Section 2, we give a brief description of each class of trees for
which we study the w or W parameter. Section 3 presents the basic notations which will be
used throughout the paper. Sections 4–9 contain the theoretical study of the w, w, and W
parameters for the various tree classes. Finally, in Section 10 we present the application of the
w parameter in computer science, namely suffix trees and their relation to the Lempel-Ziv data
compression algorithm.
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Figure 1. Example of a planar tree, with nodes numbered left-to-right.

2. The tree classes

We will study the w (and W) parameters for the following tree classes.

2.1. Simply generated trees. In the 19th century, Galton-Watson branching processes were
introduced in order to study the evolution of family names. Such a process starts with a single
particle which produces a random number of children (also particles), according to some a
priori probability distribution D. Each child behaves in exactly the same way as the starting
particle, and all children are independent. So if the starting particle has i children, then it gives
rise to i independent Galton-Watson processes. Conditioning the family tree obtained by such
a process on the total progeny to be n yields a simply generated tree of size n. Note that a
simply generated tree can always be interpreted as a planted plane tree, that is, it is embedded
into the plane and the root is planted. In particular, the successors (= children) of each node
have a natural left-to-right order. Of course, this induces a left-to-right order for the leaves,
too.

Combinatorially, these trees can be most easily described by their generating function. Let
ϕ(x) = ϕ0 +ϕ1x+ϕ2x

2 + · · · be the generating function describing the various ways that a node
can have children. In the branching process setting ϕj = P{D = j} denotes the probability
that a node has j children so that ϕ(1) = 1. However, it is also possible to interpret ϕj as
a non-negative weight and not to assume that ϕ0 + ϕ1 + · · · sums up to 1. In all cases we

introduce for each tree t the weight ω(t) =
∏

j≥0 ϕ
Dj(t)
j where Dj(t) denotes the number of

nodes of t with out-degree (=number of children) j. Then the weighted number Tn of trees of
size n is Tn =

∑
|t|=n ω(t) and the generating function of these weights is T (z) =

∑
n≥1 Tnz

n. By

definition of ω(t) and the recursive structure of trees it is clear that T (z) satisfies the functional
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equation

T (z) = zϕ(T (z))

(see, for instance, Meir and Moon [MM78]). The probability distribution on the trees of size n
induced by the weights ω(t) is exactly that given by the conditioned Galton-Watson process if
the offspring distribution D is given by P{D = j} = ϕjz

j
0/ϕ(z0), where z0 > 0 is arbitrary so

that ϕ(z0) <∞.
Important special cases are binary trees (ϕ(x) = (1 + x)2 = 1 + 2x+ x2), planted plane trees

(ϕ(x) = 1
1−x = 1 + x+ x2 + · · · ) and Cayley (i.e., labelled rooted) trees (ϕ(x) = ex).

2.2. Recursive trees. Recursive trees appear in various contexts. They are used to model
the spread of epidemics (see [Moo74]) or to investigate and construct family trees of preserved
copies of ancient manuscripts (see [NH82]). Other applications are the study of the schemes of
chain letters or pyramid games (see [GB84]).

They can be described as follows: start with a node carrying the label 1 as the root. Then
attach a node with label 2. After having attached the nodes with labels 1, 2, . . . , k, attach the
node with label k+ 1 to one of the existing nodes, with each position being equally likely. This
construction generates a nonplane labelled tree, with the nodes on each path starting at the
root getting labelled monotonically. Moreover, each of the (n− 1)! possible trees of size n has
the same probability.

2.3. Binary search trees. The origin of binary search trees dates to a fundamental problem
in computer science, the dictionary problem. In this problem a set of records is given where
each can be addressed by a key. The binary search tree is a data structure used for storing the
records. Basic operations include insert and search.

Binary search trees are plane binary trees generated by a random permutation π of {1, 2, . . . , n}.
The elements of {1, 2, . . . , n} serve as keys. The data are stored in the internal nodes of the
tree. Starting with a node labelled by π(1), one first compares π(1) with π(2). If π(2) < π(1),
then π(2) becomes root of the left subtree; otherwise, π(2) becomes root of the right subtree.
When having constructed a tree with nodes π(1), . . . , π(k), the next node π(k + 1) is inserted
by comparison with the existing nodes in the following way: start with the root as current
node. If π(k + 1) is less than the current node, then descend into the left subtree, otherwise
into the right subtree. Now continue with the root of the chosen subtree as current according
to same rule. Finally, attach n+ 1 external nodes (= leaves) at the possible places and denote
these leaves by {0, 1, . . . , n} from left to right.

2.4. Digital search trees. Digital search trees are intended for the same kinds of problems
as binary search trees. The advantage of digital search trees is a much better worst-case
performance. Furthermore it can be shown that the average-case performance is asymptotically
optimal (see [CE74, FS86]).

Digital search trees are constructed from a set of binary sequences which serve as keys for
data stored in the internal nodes of the tree. Consider a set of records, numbered from 1 to
n, and generate a binary sequence for each item, e.g., by tossing a coin. This is a symmetric
model, where zeros and ones are equally likely at each place in each sequence. We construct
a binary tree from such a sequence as follows. Item 1 is the root of the tree. After having
inserted the first k items we insert item k + 1 as follows: Choose the root as current node and
look at the binary key of the current item. If the first digit is 1, descend into the right subtree,
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otherwise into the left one. If the root of the subtree is occupied, continue by looking at the
next digit of the key.

2.5. Tries and Patricia tries. The idea is similar to that of digital search trees except that
the records are stored in the leaves rather than in the internal nodes. Again a “1” indicates
a descent into the right subtree, and “0” indicates a descent into the left subtree. Insertion
causes some rearrangement of the tree, since a leaf becomes an internal node. In contrast to
binary search trees and digital search trees, the shape of the trie is independent of the actual
order of insertion. The position of each item is determined by the shortest unique prefix of its
key.

An alternative description is as follows: Given a set X of strings, we partition X into two
parts, XL and XR, such that X ∈ XL (respectively, X ∈ XR) if the first symbol of X is 0
(respectively, 1). The rest of the trie is defined recursively in the same manner, except that
the splitting at the k-th level depends on the k-th symbol of each string. The first time that
a branch contains exactly one string, a leaf is placed in the trie at that location (denoting the
placement of the string into the trie), and no further branching takes places from such a portion
of the trie.

Patricia tries are a slight modification of tries. Consider the case when several keys share
the same prefix, but all other keys differ from this prefix already in their first position. Then
the edges corresponding to this prefix may be contracted to one single edge. This method of
construction leads to a more efficient structure.

2.6. Suffix trees. Suffix trees are fundamental in data compression and pattern matching
algorithms. Consider a string X = X1X2X3 . . .. Define X(j) = XjXj+1Xj+2 . . ., i.e., X(j)

denotes the j-th suffix of X. Then a suffix tree is exactly a trie built from the strings X =
{X(1), X(2), . . . , X(n)}. Thus, a suffix tree is simply a trie built from the first n prefixes of a
common string.

3. Notations

We describe some of the notation utilized throughout this report. We utilize a quantity from
partition enumeration:

Qn := (1− 1/2)(1− 1/4) · · · (1− 1/2n). (3.1)

Note that Q∞ := limn→∞Qn =
∏∞

i=1(1 − 2−i) ≈ 0.2887880951. We will utilize the following
related functions as well:

Q(x) =
∏
n≥1

(
1− x

2n

)
and Qx =

Q(1)

Q(2−x)
.

Note that for x = n ∈ N the notions Qx and (3.1) coincide.
Since we frequently utilize analytic combinatorics, we will often present sequences of numbers

and probabilities using generating functions. The (weighted) number of trees will be denoted
by Tn; the corresponding generating function is

T (z) =
∑
n≥0

Tnz
n.

In Sections 4–9, the w(t, a) (respectively, w(t, a)) parameter will be evaluated for the leaf
with number j, with the leaves numbered from left to right, in a random tree t of size n. (In
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other words, we will focus attention on “a” denoting the j-th leaf of the tree, when the leaves
are numbered left to right in the tree’s planar embedding.) Since the tree t is chosen at random
from the class of all trees with size n, then we use Xn,j (resp. Xn,j) to denote the value of w
(resp. w) on the j-th leaf. If there is no j-th leaf, then, of course, we set Xn,j = Xn,j = 0.

In Section 10, we always consider the w parameter on the last insertion in a trie or suffix tree
with n+ 1 insertions, i.e., external nodes. So we simply refer to wn in Section 10.

The corresponding generating functions are

F (z, u, v) =
∑
t

ω(t)z|t|
∑
a

unumber of leaf avw(t,a)

and

F (z, u, v) =
∑
t

ω(t)z|t|
∑
a

unumber of leaf avw(t,a),

where the sums are over all trees t and over all leaves a. Using the random variable Xn,j we
can rewrite this generating function in probabilistic terms:

F (z, u, v) =
∑
n,j

Tn E[vXn,j ] zn uj.

Sometimes it is more convenient to work with the generating function

P (z, u, v) =
∑
n≥0

n∑
j=0

∑
m≥0

P{Xn,j = m}znujvm

=
∑
n≥0

n∑
j=0

E[vXn,j ] zn uj,

which differs from the previous one by the normalization w.r.t. the powers of z. In some
instances it is easier to dispense with the tree of size 0, so we will then use

P ∗(z, u, v) = P (z, u, v)− 1

instead of P (z, u, v).
The random variable giving the W parameter of a random tree will be denoted by Xn. Since

this is a global tree parameter, we can define the numbers yn`k denoting the (weighted) number
of trees t of size n with W(t) = k and ` internal nodes. Then we can write the corresponding
generating function as

G(z, u, v) =
∑
n≥0

∑
`≥0

∑
k≥0

yn`kz
nu`vk =

∑
t

ω(t)z|t|u#internal nodes in tvW(t).

Using the random variable Xn we can also write in probabilistic terms:

G(z, 1, v) =
∑
n≥0

TnE[vXn ]zn.

For digital search trees and tries we will work with the exponential generating function of E[Xn],
namely

L(z) =
∑
n≥0

E[Xn]
zn

n!
. (3.2)
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We also use the notation for harmonic numbers:

Hn =
n∑
k=1

1

k
and H(2)

n =
n∑
k=1

1

k2
.

The j-th falling power of Y is defined as

Y j := Y (Y − 1)(Y − 2) · · · (Y − j + 1).

Analogously, the j-th factorial moment of a random variable Y is defined as E[Y j].
We use Iverson notation (see [Knu92]), namely [[A]] = 1 if statement A is true, and [[A]] = 0

otherwise.

4. Simply Generated Trees

4.1. The number of trees. We recall that a simply generated family of trees is defined with
help of a generating function ϕ(x) = ϕ0 + ϕ1x + ϕ2x

2 + · · · describing the various ways that

a node can have children. Each rooted tree t has then weight ω(t) =
∏

j≥0 ϕ
Dj(t)
j where Dj(t)

denotes the number of nodes of t with out-degree (= number of children) j, and Tn =
∑
|t|=n ω(t)

is the weighted number of trees of size n. The generating function T (z) =
∑

n≥1 Tnz
n of these

weighted numbers satisfies the functional equation

T (z) = zϕ(T (z)) (4.1)

(see [MM78]).
We assume that ϕ(x) in (4.1) has radius of convergence R > 0 and that there exists 0 <

τ < R with τϕ′(τ) = ϕ(τ). This is satisfied if the offspring distribution D of the underlying
branching process has a finite exponential moment E[eαD] for some α > 0. Then it is known
that ρ = 1/ϕ′(τ) is the radius of convergence of T (z) and that we have a local (singular)
expansion of the form

T (z) = τ −

√
2ϕ(τ)

ϕ′′(τ)

√
1− z ϕ′(τ) +O(|1− z ϕ′(τ)|).

For simplicity we will assume that we are in the non-periodic case, that is, gcd{k ≥ 0 :
ϕk > 0} = 1. This assumption assures that z0 = ρ is the only singularity on the radius of
convergence |z| = ρ and that T (z) can be analytically continued to (at least) to a region of
the form |z| ≤ ρ+ η, | arg(z − ρ)| > 0. By using standard methods of singularity analysis (see
[FO90]) this directly implies

Tn =

√
ϕ(τ)

2πϕ′′(τ)

ρ−n

n3/2

(
1 +O(n−1)

)
. (4.2)

Further note that

max
|z|≤ρ
|T (z)| = T (ρ) = τ <∞.
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4.2. The number of leaves. For a rooted tree t let `(t) denote the number of leaves of t.
Then the generating function

L(z, u) =
∑
t

ω(t) z|t| u`(t) =
∑
n≥1

Tn E[uLn ] zn

satisfies the functional equation

L(z, u) = zϕ(L(z, u)) + ϕ0z(u− 1).

Note that L(z, 1) = T (z). If we now assume that u is a (positive real) parameter then it follows
that the function z 7→ L(z, u) has a radius of convergence z0 = r(u) = 1/ϕ′(τ(u)) that is given
by the system of equations

τ(u) = r(u)ϕ(τ(u)) + ϕ0z(u− 1), 1 = r(u)ϕ′(τ(u)).

Theorem 1 (cf. Kolchin [Kol86], Drmota [Drm94a] and Hwang [Hwa94]). Let Ln denote the
random variable that counts the number of leaves in a random tree of size n (with respect to the
probability distribution induced by the weights ω(t)). Then

E[Ln] = −ρ
′(1)

ρ
n+O(1) =

ϕ0

ϕ(τ)
n+O(1), (4.3)

and Ln satisfies a central limit theorem, that is, (Ln − E[Ln])/V[Ln] converges weakly to the
standard normal distribution N(0, 1).

We sketch the idea of the proof: We have the local expansions

L(z, u) = τ(u)−

√
2ϕ(τ(u))

ϕ′′(τ(u))

√
1− z ϕ′(τ) +O(|1− z ϕ′(τ(u))|)

and

r(u) = ρ− ρ ϕ0

ϕ(τ)
(u− 1) +O((u− 1)2).

Moreover, r(u) is the only singularity on the circle of convergence |z| = r(u) and we (again)
have

max
|z|≤r(u)

|L(z, u)| = L(r(u), u) = τ(u) <∞.

Note also that τ(u) is continuous in u.
By extracting the n-th coefficient of L(z, u) we get (similarly to the above)

Tn E[uLn ] =

√
ϕ(τ(u))

2πϕ′′(τ(u))

r(u)−n

n3/2

(
1 +O(n−1)

)
.

Consequently,

E[uLn ] =

√
ϕ′′(τ)ϕ(τ(u))

ϕ(τ)ϕ′′(τ(u))

(
ρ

r(u)

)n (
1 +O(n−1)

)
;

this holds uniformly in a neighborhood of u = 1. Thus, by applying the local expansion of r(u)
(that we can extend to the complex plane), we directly get the central limit theorem and the
asymptotic expansion (4.3).
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4.3. Result on the w parameter for simply generated trees. Now we turn our attention
to the w parameter. First we present an explicit formula for F (z, u, v) (cf. Section 3).

Lemma 2. Let T (z) and L(z, u) be as above. Then

F (z, u, v) = ϕ0zu+

ϕ0z
2uv

ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)

1− z ϕ(T (z))− ϕ(L(z, u))

T (z)− L(z, u)

(4.4)

and

F (z, u, v) = ϕ0zu+

ϕ0z
2u
ϕ(L(z, v))− ϕ(L(z, uv))

L(z, v)− L(z, uv)

1− z ϕ(T (z))− ϕ(L(z, u))

T (z)− L(z, u)

. (4.5)

Proof. Set F̃ (z, u, v) = F (z, u, v) − ϕ0zu. Then the recursive description of simply generated
trees leads to

F̃ = zF̃
(
ϕ1 + ϕ2(T (z) + L(z, u)) + ϕ3(T (z)2 + T (z)L(z, u) + L(z, u)2) + · · ·

)
+ ϕ0z

2uv
(
ϕ1 + ϕ2(L(zv, v−1) + L(zv, uv−1))

+ ϕ3(L(zv, v−1)2 + L(zv, v−1)L(zv, uv−1) + L(zv, uv−1)2) + · · ·
)

= zF̃
ϕ(T (z))− ϕ(L(z, u))

T (z)− L(z, u)
+ ϕ0z

2uv
ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)
.

Of course, this proves (4.4). The proof of (4.5) is just a slight variation of that of (4.4). �

Theorem 3. Suppose that ε > 0. Then

E[vXn,j ] = ρvϕ′(L(ρv, v−1)) +O(n−1)

and

E[vXn,j ] = ρϕ′(L(ρ, v)) +O(n−1)

uniformly for

|v| ≤ 1− ε and ε ≤ j

n
≤ ϕ0

ϕ(τ)
(1− ε).

Consequently, Xn,j and Xn,j have discrete limiting distributions X and X that are indepen-
dent of the leaf number j as long as j is contained in the range given above.

Moreover, if pm and pm denote the probabilities pm = P{X = m} and pm = P{X = m} then

P{Xn,j = m} = pm +O
(
(1− ε)−m/n

)
and

P{Xn,j = m} = pm +O
(
(1− ε)−m/n

)
uniformly in the range ε ≤ j

n
≤ ϕ0

ϕ(τ)
(1− ε).
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Remark 4. Since the expected number of leaves is given by ϕ0

ϕ(τ)
n, it is natural to assume this

upper bound of the number of leaves. Note that Xn,j is set zero if there is no j-th leaf. This can
of course occur but only with a very small probability that is hidden in the error term. Recall
that it is expected that Xn,j has a discrete limiting distribution, that is, it does not (really)
depend on the tree size. There might be some side effects around the left most and right most
leaves.

It should be further mentioned that the probability generating functions of the limiting
distributions X and X, namely f(v) = ρv2ϕ′(T (ρv)) and f(v) = ρvϕ′(L(ρ, v)), are singular at
v = 1. For example

f(v) = 1−

√
2ϕ(τ)ϕ′′(τ)

ϕ′(τ)2

(
1− ϕ0

ϕ(τ)

)√
1− v +O(|1− v|),

which leads to

pm ∼

√
ϕ(τ)ϕ′′(τ)

2πϕ′(τ)2

(
1− ϕ0

ϕ(τ)

)
m−3/2.

This asymptotic expansion also shows that the expected value of X resp. X is infinite.
In fact, we will also show that E[Xn,j]→∞ and E[Xn,j]→∞.

Theorem 5. Set σ := τ
√
ϕ′′(τ)/ϕ(τ). Then the expected value E[Xn,j] is given by

E[Xn,j] =
ϕ0

ϕ(τ)

(
1− ϕ0

ϕ(τ)

)
σ√
2π

n3/2√
j
(

ϕ0

ϕ(τ)
n− j

) (1 +O(n−1/2)
)

(4.6)

and

E[Xn,j] =

(
ϕ0

ϕ(τ)

)2
σ√
2π

n3/2√
j
(

ϕ0

ϕ(τ)
n− j

) (1 +O(n−1/2)
)

(4.7)

uniformly for ε ≤ j
n
≤ ϕ0

ϕ(τ)
(1− ε), where ε > 0.

4.4. Proofs. The proof of these properties relies on an analysis of the generating functions
F (z, u, v) and F (z, u, v). For the sake of brevity we only present the first case here.

Proof of Theorem 3. We use a slightly different representation of F (z, u, v). Since T (z) =
zϕ(T (z)) and L(z, u) = zϕ(L(z, u)) + ϕ0z(u− 1), we have

1− zϕ(T (z))− ϕ(L(z, u))

T (z)− L(z, u)
=

zϕ0(1− u)

T (z)− L(z, u)
.

Consequently,

F (z, u, v) = ϕ0zu+
zuv(T (z)− L(z, u))

1− u
ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)

= ϕ0zu+
zuvT (z)ϕ′(L(zv, v−1))

1− u
− zuvL(z, u)ϕ′(L(zv, v−1))

1− u

− zuvT (z)

1− u

(
ϕ′(L(zv, v−1))− ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)

)
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+
zuv2L(z, u)

1− u

(
ϕ′(L(zv, v−1))− ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)

)
.

Our aim is to extract the coefficient of ujzn.
We first discuss the term

zuvT (z)ϕ′(L(zv, v−1))

1− u
.

The coefficient of uj, j ≥ 1, is trivially given by

zvT (z)ϕ′(L(zv, v−1)).

Note that we assume that |v| ≤ 1− ε. This means that L(zv, v−1) is regular if z is close to ρ.
Hence the singular expansion of zvT (z)ϕ′(L(zv, v−1)) is given by

ρvϕ′(L(ρv, v−1))

(
τ −

√
2ϕ(τ)

ϕ′′(τ)

√
1− z ϕ′(τ) + c (1− z ϕ′(τ)) +O(|1− z ϕ′(τ)|3/2)

)
with some constant c. Of course this shows that the coefficient of zn is asymptotically given by

Tn ρvϕ
′(L(ρv, v−1))

(
1 +O(n−1)

)
.

It will turn out that this term is in fact the dominating term. Thus, it remains to show that
the other terms are asymptotically small.

In order to extract the coefficient of ujzn in

zuvL(z, u)ϕ′(L(zv, v−1))

1− u
we use Cauchy’s formula and have to estimate the integral

1

(2πi)2

∫
|z|=r(u′)

∫
|u|=u′

zuvL(z, u)ϕ′(L(zv, v−1))

1− u
du

uj+1

dz

zn+1
,

where u′ = 1 − κ
j

with κ = log2 n. Since j ≥ εn it is no loss of generality to assume that

j > log2 n. Since we know that |L(z, u)| ≤ L(|z|, |u|) = L(r(u′), u′) is bounded and that
L(zv, v−1) is regular (for sufficiently large j ≥ εn) we get a trivial upper bound of the form

C
j

κ
u′−jr(u)−n � j

κ
ρ−ne−κ(

ϕ0
ϕ(τ)

n
j
−1) � nρ−n

e−εκ

κ
.

Recall that κ = log2 n. Hence, get an upper bound of the form Tn/n.
For the third term we use a similar procedure. Since |v| ≤ 1− ε, it follows that there exists

η > 0 such that

ϕ′(L(zv, v−1))− ϕ(L(zv, v−1))− ϕ(L(zv, uv−1))

L(zv, v−1)− L(zv, uv−1)
= O(|u− 1|)

uniformly for |u| ≤ 1 + η and |z| ≤ ρ. This implies that u = 1 is not a singularity of the third
term. Hence, we use Cauchy’s formula for |z| = ρ and |u| = 1 + η and get an upper bound for
the coefficient of ujzn of the form

C ρ−n(1 + η)−j � ρ−n(1 + η)−εn � Tn
n
.
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Finally, for the fourth and last term we again use the contours |u| = u′ = 1− κ
j

with κ = log2 n

and |z| = r(u′) and get the same kind of upper bound of the form

C ρ−n
e−εκ

κ
� Tn

n
.

This completes the proof of Theorem 3 for Xn,j. �

Proof of Theorem 5. For the proof of (4.6) we work with

G(z, u) =
∂

∂v
F (z, u, v)

∣∣∣∣
v=1

=
∑
n,j

Tn E[Xn,j] z
nuj.

By using the explicit representation for F (z, u, v) (in terms of T (z) and L(z, u)) and the func-
tional equations for T (z) and L(z, u) we obtain an alternative representation:

G(z, u) = ϕ0uz +
ϕ0uz

T (z)− L(z, u)

(
T (z)− ϕ0z

1− zϕ′(T (z))
− L(z, u)− ϕ0uz

1− zϕ′(L(z, u))

)
.

Note that

(T (z)− ϕ0z)(1− zϕ′(L(z, u)))− (L(z, u)− ϕ0uz)(1− zϕ′(T (z)))

T (z)− L(z, u)

= 1− zϕ′(T (z)) + (T (z)− ϕ0z)zϕ′′(T (z)) +O (|T (z)− L(z, u)|+ |u− 1|) .
Hence, the asymptotic leading term of G(z, u) (if z is close to ρ and u is close to 1) is given by

ϕ0uz
2(T (z)− ϕ0z)ϕ′′(T (z))

(1− zϕ′(T (z)))(1− zϕ′(L(z, u)))
. (4.8)

We concentrate on that term. It will then be an easy exercise to estimate the (minor) contri-
bution of the other terms.

We are now in a situation where we can use the technique of [Drm94b], the double Hankel
contour method. A Hankel contour1 HM , 0 < M ≤ ∞ is of the form (compare also with
Figure 2)

HM = {t ∈ C : |t| = 1, <(t) < 0} ∪ {t ∈ C : 0 ≤ <(t) ≤M, =(t) = ±1}.
For example, by using the substitution v = w2/2 one easily shows that

1

2πi

∫
H∞

e−v√
−v

dv =
1√
π
. (4.9)

We will use this formula in the sequel. By Cauchy’s formula, the coefficient of ujzn in (4.8) is
given by

1

(2πi)2

∫
|u|=u0

∫
|z|=z0

ϕ0uz
2(T (z)− ϕ0z)ϕ′′(T (z))

(1− zϕ′(T (z)))(1− zϕ′(L(z, u)))

du

uj+1

dz

zn+1
, (4.10)

where u0 < 1 and z0 < ρ. We already know that T (z) has a (square root) singularity at z = ρ
and L(z, u) has (also a square root) singularity at z = r(u), that is, if u is fixed then z = r(u)
is a singularity in z and, conversely, if z is fixed then u = ρ−1(z) is a singularity in u. It is
a well known fact that the main asymptotic behaviour of the integral (4.10) comes from that

1This notation is adopted from Hankel’s representations of Γ(z) and 1/Γ(z), where a “Hankel contour”
appears.
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H
 

Figure 2. Hankel contour and path of integration.

part of integration that is close to the singularity. More precisely, we will transform (first) the
path of integration from |z| = z0 into the form that is depicted in Figure 2; compare also with
the singularity analysis method of Flajolet and Odlyzko [FO90]. In particular, for the main
part that is close to the singularity one (usually) uses the substitution z = ρ(1 + t

n
), where

t ∈ H̃1(n) := H(logn)2 . In (almost) the same way we modify the path of integration for u
depending on z = ρ(1 + t

n
) (for t ∈ H(logn)2). We set u = 1 + s

j
, where

s ∈ H̃2(n, t) := HK(logn)2 −
m

n

ϕ(τ)

ϕ0

t,

where K is a suitably chosen (large) constant depending on ε. This (small) part is completed
by a large circle similar to the corresponding one for z, see also Figure 2. We will see in a
moment that this choice ensures that the singularity of L(z, u) is taken into account correctly.
(If z is contained in the remaining part of the contour, that is, on the large circle, then we
utilize a properly chosen circle for u, too; compare with [Drm94b]. However, this part of the
integral will not contribute to the asymptotic leading term.)

For z = ρ(1 + t
n
) and u = 1 + s

j
(with t ∈ H̃1(n) and s ∈ H̃2(n, t)) we have

T (z) = τ −

√
2ϕ(τ)

ϕ′′(τ)

√
− t
n

+O

(
|t|
n

)
,

L(z, u) = τ −

√
2ϕ(τ)

ϕ′′(τ)

√
− t
n
− ϕ0

ϕ(τ)

s

j
+O

(
|s|
j

+
|t|
n

)
and consequently

1− zϕ′(T (z)) =
√

2σ2

√
− t
n

+O

(
|t|
n

)
,

1− zϕ′(L(z, u)) =
√

2σ2

√
− t
n
− ϕ0

ϕ(τ)

s

j
+O

(
|s|
j

+
|t|
n

)
.



14 M. DRMOTA, B. GITTENBERGER, A. PANHOLZER, H. PRODINGER, AND M. D. WARD

Hence, the asymptotic leading term of the integral in (4.10) is given by

ρ−n

jn

1

(2πi)2

∫
H̃1(n)

∫
H̃2(n,t)

ϕ0ρ
2(τ − ϕ0ρ)ϕ′′(τ)

2σ2

√
− t
n

√
− t
n
− ϕ0

ϕ(τ)
s
j

e−s−t
(

1 +O

(
|t|√
n

+
|s|√
j

))
ds dt

=
ρ−n√
jn

√
ϕ0(τ − ϕ0ρ)

2
√
ϕ(τ)

1

(2πi)2

∫
H̃1(n)

∫
H̃2(n,t)

e−s−t

√
−t
√
−s− tϕ(τ)

ϕ0

j
n

(
1 +O

(
|t|√
n

+
|s|√
j

))
ds dt.

Next we use the substitutions v = s+ tϕ(τ)
ϕ0

j
n

and w = t
(

1− ϕ(τ)
ϕ0

j
n

)
. We obtain

ρ−n√
jn

√
ϕ0(τ − ϕ0ρ)

2
√
ϕ(τ)

1

(2πi)2

1√
1− ϕ(τ)

ϕ0

j
n

∫
H

∫
H

e−v−w√
−v
√
−w

dv dw =
ϕ0

ϕ(τ)

ρ−n

2π

τ − ϕ0ρ√
j
(

ϕ0

ϕ(τ)
n− j

) ,
if we replace the paths of integration by (infinite) Hankel contours, use formula (4.9), and
neglect the (small) error term. Hence, if we divide by the asymptotics of Tn given in (4.2) we
finally get

E[Xn,j] ∼
ϕ0

ϕ(τ)

(
1− ϕ0

ϕ(τ)

)
σ√
2π

n3/2√
j
(

ϕ0

ϕ(τ)
n− j

) .
Of course, we must carefully handle the error terms; however, it is not difficult to show that
they all are of order 1/

√
n smaller than the asymptotic leading term. We leave the details to

the reader; compare also with [Drm94b].
The proof for (4.7) is very similar to that of (4.6). �

5. Recursive trees

There are (n − 1)! trees of size n; by definition there is no tree of size 0. Furthermore, we
consider labelled objects, so the natural weight for a tree t is ω(t) = 1/|t|!. The combinatorial
properties of this tree class translate into the functional-differential equation T ′(z) = eT (z) for
its generating function. The generating function is therefore

T (z) = log
1

1− z
.

Since there is no order among the successors of a specific node, we have to consider the W
parameter in this case. As in the previous section, let L(z, u) denote the generating function
counting size and number of leaves. We start with two ancillary results, one on L(z, u) and one
on G(z, u, v).

Lemma 6. The generating function L(z, u) is

L(z, u) = log
1

e−(u−1)z − 1
u−1

(1− e−(u−1)z)

Proof. The function L(z, u) is the solution of the differential equation y′ = ey + u − 1 with
initial condition y(0) = 0 where u can be viewed as a formal parameter. Solving this equation
yields the assertion. �
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Lemma 7. The generating function G(z, u, v) satisfies the following functional-differential
equation:

∂G(z, u, v)

∂z
=
∑
k≥0

1

k!

k∑
m=0

(
k

m

)
zmvmu(G(z, uvm, v)− z)k−m. (5.1)

Proof. Consider a node x in some given recursive tree t. Assume that x has outdegree k and
that exactly m subtrees of x are leaves. Then for each of these leaves the contribution to the W
parameter equals the number of internal nodes of the subtree of t which is rooted at x. Hence,
x itself and all internal nodes of all nonleaves attached to x contribute m times. Now, the result
can be easily seen by taking into account the additivity of the W parameter. �

It will eventually turn out that this equation is too complicated to obtain distributional
results, but a pumping moment approach can be used to compute moments, though the ex-
pressions quickly become quite intricate, even for the second moment. So we will only compute
the first two moments. In principle, higher moments can be extracted in the same manner.

We get

Theorem 8. The first two moments of the W parameter for recursive trees are

E[Xn] =


0, n < 2,

1, n = 2,
n
2

(
Hn − 5

6

)
, n ≥ 3,

(5.2)

and

E[X2
n] =



0, n < 2,

1, n = 2,
5
2

n = 3,
41
6

n = 4,
347
24

n = 5,

nL(n) n ≥ 6,

(5.3)

where

L(n) =

(
n

4
− 37

12

)
(H2

n −H(2)
n )−

(
5n

12
− 1589

360

)
Hn +

10

3
H(2)
n

+
46950n3 − 160453n2 − 14297n+ 129600

21600n(n− 1)
.

The asymptotic expressions for expectation and variance are given by

E[Xn] =
1

2
n log n+

(
γ

2
− 5

6

)
n+O(1)

and

V[Xn] =

(
2− π2

24

)
n2 − 37

12
n log2 n+

1589− 2220γ

360
n log n+O(n)
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Remark 9. Since the variance is smaller than the square of the mean, we observe that the
distribution is concentrated around its mean. The complexity of the expressions and computa-
tions for the first two moments make it seem rather hopeless to compute all the other moments.
Nevertheless the first two moments resemble those of the path length which is not normal, see
[DF99].

Proof. Let

f1(z) =
∑
n≥1

E[Xn]
zn

n
=
∂G

∂v
(z, 1, v)

∣∣∣∣
v=1

.

Then normalizing yields E[Xn] = n[zn]f1(z). Differentiating (5.1) w.r.t. v and standard simpli-
fications lead to the first order linear differential equation

f ′1(z) =
1

1− z
f1(z) +

z(Gu(z, 1, 1) + 1)

1− z
. (5.4)

Note that

G(z, u, 1) = L

(
zu,

1

u

)
(5.5)

and therefore Gu(z, 1, 1) = zLz(z, 1) − Lu(z, 1) where subscripts denote partial derivatives.
Using L(z, 1) = T (z) and Lemma 6 we obtain

Lz(z, 1) =
1

1− z
, Lu(z, 1) =

2z − z2

2(1− z)
,

and using these formulae we get Gu(z, 1, 1) = (2z−z2)/(1−z) and thus equation (5.4) becomes

f ′1(z) =
1

1− z
f1(z) +

2z − 2z2 + z3

2(1− z)2
.

Solving this equation gives

f1(z) =
1

1− z

(
1

2
log

1

1− z
− z

2
+
z2

4
− z3

6

)
.

From this one easily extracts the coefficients and obtains (5.2).
For computing the second moment E[X2

n] set

f2(z) =
∑
n≥1

E[X2
n]
zn

n
=

(
v
∂

∂v

)2

G(z, 1, v)

∣∣∣∣∣
v=1

.

Hence

E[X2
n] = n[zn]f2(z) = n[zn]

(
v
∂

∂v

)2

G(z, 1, v)

∣∣∣∣∣
v=1

.

This formal differentiation can be done with the help of Maple. We get the differential equation

f ′2(z) =
1

1− z
f2(z) +

(z + z2)(1 +Guu(z, 1, 1) + 3Gu(z, 1, 1) +Gu(z, 1, 1)2)

1− z

+
2z(f1(z) +Guv(z, 1, 1) +Gu(z, 1, 1)f1(z) + f1(z)2

1− z
. (5.6)
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Employing (5.5) again we obtain Guu(z, 1, 1) = z2Lzz(z, 1)−2zLzu(z, 1)+Luu(z, 1)+2Lu(z, 1).
Lemma 6 and the differential equation for L(z, u) gives

Lzz(z, 1) =
1

(1− z)2
, Lzu(z, 1) =

2− 2z + z2

2(1− z)2
, Luu(z, 1) =

(2z − z2)2

4(1− z)2
− 3z2 − z3

3(1− z)

and hence Guu(z, 1, 1) = z3(4− z)/12(1− z)2. In order to compute Guv(z, 1, 1) we differentiate
(5.1) w.r.t. u and v. Then Guv(z, 1, 1) is the solution of the differential equation

y′ =
y

1− z
+

(z + z2)(Guu(z, 1, 1) +Gu(z, 1, 1)2) + z(1 + 3Gu(z, 1, 1)) + f1(z)(1 +Gu(z, 1, 1))

1− z
with initial condition y(0) = 0. Plugging the solution of this equation into (5.6) and solving
(5.6) afterwards gives the desired expression for f2(z):

f2(z) =
1

4(1− z)2
log2 1

1− z
+

1

12(1− z)2
log

1

1− z
+

253

144(1− z)2

− 10

3(1− z)
log2 1

1− z
+

1559

360(1− z)
log

1

1− z
− 151453

21600(1− z)

− 6 log
1

1− z
+

z

12
log

1

1− z

+
113503 + 109813z + 33193z2 + 8463z3 + 2028z4 + 240z5

21600
.

Extracting the coefficient by using the well-known formulas (see [GK90, p. 10])

1

(1− z)m+1
log

1

1− z
=
∑
n≥0

(
n+m

m

)
(Hn+m −Hm)zn,

1

(1− z)m+1

(
log

1

1− z

)2

=
∑
n≥0

(
n+m

m

)(
(Hn+m −Hm)2 − (H

(2)
n+m −H(2)

m )
)
zn,

and then normalizing, we obtain (5.3). The variance can now be computed from V[Xn] =
E[X2

n]− E[Xn]2. �

6. Binary search trees

Consider a binary search tree constructed from a random permutation π of {1, 2, . . . , n}. In
that way an – at first – incomplete binary tree is constructed using the values π(1), π(2), . . . , π(n)
and the rules described in Section 2. Then it is completed by attaching leaves to all nodes of
outdegree less than two. These leaves do not store any data and correspond technically to null
pointers.

To study the random variable Xn,j we use the well-known combinatorial decomposition of
binary search trees, i.e., viewing the tree as a single root, if it has size one, and as a root with
two binary search trees attached to it, otherwise. This translates into the following differential
equation for P (z, u, v):

∂P (z, u, v)

∂z
=
P (z, u, v)− 1

1− z
+

v

1− zv
+
u(P (z, u, v)− 1)

1− zu
+

uv

1− zuv
, (6.1)

with initial condition P (0, u, v) = 1.
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Via standard techniques or by using Maple one obtains the following solution of the differ-
ential equation (6.1):

P (z, u, v) =
−zu− z + zuv + zv + v

v(1− zu)(1− z)
(6.2)

+
(1− v)(u− v)

v2(1− zu)(1− z)
log

(
1

1− zv

)
+

(1− v)(1− uv)

uv2(1− zu)(1− z)
log

(
1

1− zuv

)
.

Extracting the exact coefficients of (6.1) is an easy task, but one must take several cases into
account. This leads to the following theorem.

Theorem 10. The exact probabilities P{Xn,j = m} of the w parameter are, for n ≥ 0, 0 ≤ j ≤
n, and m ≥ 0, given as follows (outside this range of n, j, m the probabilities are zero anyway).
For m ≥ 1:

P{Xn,j = m} =



4
m(m+1)(m+2)

, for m ≤ min(j − 1, n− j − 1),
2

m(m+1)(m+2)
+ 1

m(m+1)
, for (j = m ≤ n− j − 1) or (n− j = m ≤ j − 1),

2
m(m+1)

, for j = m = n− j,
2

m(m+1)(m+2)
, for (1 ≤ n− j < m ≤ j − 1) or (1 ≤ j < m ≤ n− j − 1),

1
m(m+1)

, for (1 ≤ j < m = n− j) or (1 ≤ n− j < m = j)

or (j = 0 and m ≤ n− 1) or (j = n and m ≤ n− 1),
1
m
, for m = n and (j = 0 or j = n),

0, for m > max(j, n− j).

For m = 0:

P{Xn,j = 0} =

{
1, for n = j = 0,

0, otherwise.

For all sequences (j = j(n))n∈N such that j →∞ and n−j →∞, it follows from Theorem 10
that Xn,j converges weakly as n→∞ to a discrete random variable X with distribution

P{X = m} =
4

m(m+ 1)(m+ 2)
, for m ≥ 1.

Interestingly enough, the expectation of X is finite:

E(X) =
∑
m≥1

4

(m+ 1)(m+ 2)
= 2,

but all higher moments E(Xs), s ≥ 2 – and thus, in particular, the variance V(X) – do not
exist.

We remark that results concerning X could be obtained also by arguments that can be found
in [Dev91], where local counters, as, e.g., the number of leaves or the number of nodes with m
descendants, are studied for binary search trees.

We will also give exact formulæ for the expectation E(Xn,j) and the second moment E(X2
n,j).

To do this, we differentiate P (z, u, v) as given by (6.2) once and twice w.r.t. v and evaluate at
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v = 1. We obtain

G1(z, u) :=
∂P (z, u, v)

∂v

∣∣∣∣
v=1

=
1− u

(1− zu)(1− z)
log

(
1

1− z

)
+

u− 1

u(1− zu)(1− z)
log

(
1

1− zu

)
+

z(u+ 1)

(1− zu)(1− z)
,

G2(z, u) :=
∂2P (z, u, v)

∂v2

∣∣∣∣
v=1

=
4u− 2

(1− zu)(1− z)
log

(
1

1− z

)
+

4− 2u

u(1− zu)(1− z)
log

(
1

1− zu

)
+

2(2− z)

(1− z)2
+

2

(1− zu)2
− 2(z + 3)

(1− zu)(1− z)
.

Extracting coefficients then leads to the following result.

E(Xn,j) = [znuj]G1(z, u) =


2− 1

j+1
− 1

n−j+1
, for 1 ≤ j ≤ n− 1,

Hn, for (j = 0 ∨ j = n) ∧ n ≥ 1,

0, for j = 0 ∧ n = 0.

E(X2
n,j) = [znuj]G2(z, u) + E(Xn,j)

=


2Hj + 2Hn−j + 3

j+1
+ 3

n−j+1
− 6, for 1 ≤ j ≤ n− 1,

2n−Hn, for (j = 0 ∨ j = n) ∧ n ≥ 1,

0, for j = 0 ∧ n = 0.

7. The W parameter for digital search trees

Recall from Section 2 that digital search trees are built in a similar way as binary search
trees, but the keys are 0-1-strings rather than integers. That means that the keys are used
to construct an incomplete binary tree which is completed by attached leaves to all nodes of
outdegree less than two. Internal nodes where both successors are leaves are called internal
endnodes.

When studying the w parameter in digital search trees, we confine ourselves to the W pa-
rameter. Here we compute the expected value of the W parameter. Studying this parameter
is similar—but slightly more involved—than studying the number of internal endnodes, which
was performed by Flajolet and Sedgewick, who solved a problem of Knuth [FS86].

We consider the symmetric model of digital search trees only, but the modification to the
asymmetric model would be straightforward, for the expected value. The reader should note
that in [KP88] the variance of the number of internal endnodes was computed, and this project
was of daunting complexity.

Theorem 11. The expected value of the W parameter in the symmetric model of digital search
trees is

E[Xn] ∼ n (A+ δ(log2 n)) ,

with

A := −
∑
l≥0

2−l(l + 1)(l − 2)

Ql

+
1

L

∑
l≥0

2−l(2l − 1)

Ql

+
∑

k≥1,l≥0

2−l

2l+k − 1

(l + 1)(l − 2)

Ql

= 1.1030266984 . . . .



20 M. DRMOTA, B. GITTENBERGER, A. PANHOLZER, H. PRODINGER, AND M. D. WARD

The periodic function δ(x) of period 1 has mean zero and computable Fourier coefficients.2

Proof. For brevity, set ln := E[Xn]. Then the following recursion for n ≥ 3 is straightforward:

ln+1 = 2−n
n−2∑
k=2

(
n

k

)
(lk + ln−k) + 21−nln + 21−nn(n+ 1 + ln−1),

and l0 = l1 = 0, l2 = 2, l3 = 4.
We can rewrite it:

ln+1 = 21−n
n−2∑
k=0

(
n

k

)
lk + 21−nln + 21−nn(n+ 1 + ln−1)

= 21−n
n∑
k=0

(
n

k

)
lk + 21−nn(n+ 1).

Recalling L(z) =
∑

n≥0 lnz
n/n!, this translates into

L′(z) = 2ez/2L( z
2
) + ez/2

(
2z +

z2

2

)
.

With the Poisson transformed function M(z) = e−zL(z), this is

M(z) +M ′(z) = 2M( z
2
) + e−z/2

(
2z +

z2

2

)
.

Reading off the coefficients mn := n![zn]M(z) we get:

mn +mn+1 = 21−nmn + n![zn]e−z/2
(z2

2
+ 2z

)
,

or

mn+1 = −(1− 21−n)mn + n!
(1

2
[zn−2]e−z/2 + 2[zn−1]e−z/2

)
= −(1− 21−n)mn +

(n(n− 1)

2
22−n(−1)n + n22−n(−1)n−1

)
= −(1− 21−n)mn + 21−n(−1)nn(n− 3).

This holds for n ≥ 2; m0 = m1 = 0. It follows that

mn+1

Qn−1(−1)n+1
=

mn

Qn−2(−1)n
− 21−nn(n− 3)

Qn−1

= 2−
n∑
k=2

21−kk(k − 3)

Qk−1

= −
n−1∑
k=0

2−k(k + 1)(k − 2)

Qk

.

2Note also that we use this notation in other parts of this paper in a generic sense, i.e., δ(x) always denotes
a periodic function of period 1 with mean zero, but in different contexts it could mean a different function.
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Hence

mn = Qn−2(−1)n−1

n−2∑
k=0

2−k(k + 1)(k − 2)

Qk

and

ln =
n∑
k=2

(
n

k

)
(−1)kf(k − 2)

with

f(k) = −Qk

k∑
l=0

2−l(l + 1)(l − 2)

Ql

= −Qk

[∑
l≥0

2−l(l + 1)(l − 2)

Ql

−
∑
l−k>0

2−l(l + 1)(l − 2)

Ql

]

= −Qk

[
ρ−

∑
l≥1

2−l−k(l + k + 1)(l + k − 2)

Ql+k

]
.

This can be continued to a complex function:

f(z) = −Qz

[
ρ−

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)

Ql+z

]

with

ρ :=
∑
l≥0

2−l(l + 1)(l − 2)

Ql

and the usual Qz = Q∞/Q(2−z).
Following Rice’s method [FS95], we can write

ln =
1

2πi

∫
C

n!(−1)n

z(z − 1) · · · (z − n)
f(z − 2)dz,

where the curve C encircles the poles 2, . . . , n and no others. Shifting the line of integration,
we find that the main contribution of the asymptotic expansion of ln comes from the pole at
z = 1.

We need f(z) around z = −1. In the following, we use the shorthand notation L = log 2;
there is no danger to confuse this with the generating function L(z)!

f(z) ∼ 1

L

d

dz

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)

Ql+z

∣∣∣∣
z=−1

.

With some effort, this differentiation can be made explicit:

d

dz

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)

Ql+z

=
1

Q∞

d

dz

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)Q(2−l−z)



22 M. DRMOTA, B. GITTENBERGER, A. PANHOLZER, H. PRODINGER, AND M. D. WARD

= − L

Q∞

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)Q(2−l−z)

+
1

Q∞

∑
l≥1

2−l−z(2l + 2z − 1)Q(2−l−z)

− L

Q∞

∑
l≥1

2−l−z(l + z + 1)(l + z − 2)Q′(2−l−z).

Note that

Q′(x) = −Q(x)
∑
k≥1

1

2k − x
.

Consequently we have

lim
z→−1

f(z) = −
∑
l≥1

21−ll(l − 3)

Ql−1

+
1

L

∑
l≥1

21−l(2l − 3)

Ql−1

+
∑
l,k≥1

21−l

2l+k−1 − 1

l(l − 3)

Ql−1

.

Putting everything together, the theorem follows. �

From Flajolet-Sedgewick’s work [FS86, pp. 759–763], we know that (apart from small fluc-
tuations), there are about β · n internal endnodes (β ≈ 0.372046812). Dividing A by β, we get
the average size of the W parameter, averaged over all trees and over all internal endnodes.
The numerical constant is ≈ 2.9647525.

8. The W parameter for tries

Recall (Section 2) that tries are constructed in basically the same way as digital search trees,
but data are stored in the leaves rather than the internal nodes. We consider a trie built of n
random data (more precisely n random 0-1-strings). In general, a trie constructed from n data
has more than n such that not all the leaves contain data. We will study the W parameter,
where the sum is over those leaves that contain data only!

Let an denote the (well known) average number of internal nodes, in a random trie built of
n random data. Note that

an =
n∑
k=2

(
n

k

)
(−1)k

k − 1

1− 21−k

for n ≥ 2; a0 = a1 = 0.

Theorem 12. The average E[Xn] of the W parameter, over random tries of n nodes, is as-
ymptotic to

n

[
1 +

1

L

∑
k≥2

ak
k2k

]
+ nδ(log2 n).

The numerical value of the constant in the bracket is 1.782784867 . . . ; δ(x) is (again) a periodic
function of period 1 with mean zero.

Proof. Let ln be as in the previous section.
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The following recursion is straightforward:

ln = 2−n
n∑
k=0

(
n

k

)
(lk + ln−k) + 2 · 2−nn(1 + an−1)

for n ≥ 2; l0 = l1 = 0.
Now let

L(z) :=
∑
n≥0

ln
zn

n!
, M(z) = e−zL(z), A(z) :=

∑
n≥0

an
zn

n!
, B(z) = e−zA(z).

The recursion translates into

L(z) = 2ez/2L( z
2
) + 2

∑
n≥2

(z/2)n

n!
n(1 + an−1)

= 2ez/2L( z
2
) + z

∑
n≥1

(z/2)n

n!
+ z

∑
n≥1

(z/2)n

n!
an

= 2ez/2L( z
2
) + z(ez/2 − 1) + zA( z

2
).

Therefore

M(z) = 2M( z
2
) + z(e−z/2 − e−z) + ze−zA( z

2
)

= 2M( z
2
) +R(z).

The technique of depoissonization now produces ln ∼ M(n); we can determine M(n) using
the Mellin transform. The Mellin transform (see [FGD95] and [Szp01]) of f(x) is defined as
f ∗(s) =M(f(x); s) =

∫∞
0
f(x)xs−1 dx;

M∗(s) = 21+sM∗(s) +R∗(s) =
R∗(s)

1− 21+s
.

The inversion formula tells us that

M(z) ∼ −
∑

poles sk

Ress=sk
R∗(s)

1− 21+s
z−s.

We consider only the pole at s = −1 (there are also some at −1+χk, leading to the fluctuations
that are commonly found in such asymptotic estimates).

So M(z) ∼ 1
L
R∗(−1)z, for z large (apart from fluctuations).

But

R∗(−1) =

∫ ∞
0

R(z)z−2dz

=

∫ ∞
0

[
e−z/2 − e−z + e−zA( z

2
)
] dz
z

= L+

∫ ∞
0

e−z
∑
n≥2

an
zn−1

n!2n
dz

= L+
∑
n≥2

an
n!2n

Γ(n)
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= L+
∑
n≥2

an
n2n

.

�

Alternative model. Now we sum over all leaves, even if they do not contain data. The
treatment is very similar.

ln = 2−n
n∑
k=0

(
n

k

)
(lk + ln−k) + 21−nn(1 + an−1) + 21−n(1 + an),

for n ≥ 2; l0 = l1 = 0.
Only the R-function changes; now it is

Ralt(z) = R(z) + 2e−z/2 − (2 + z)e−z + 2e−z
∑
n≥2

an
zn

2nn!
.

Furthermore

R∗alt(−1) = R∗(−1) + 1− L+ 2
∑
n≥2

an
2nn(n− 1)

= 1 +
∑
n≥2

an(n+ 1)

2nn(n− 1)
.

Theorem 13. The average ln of the W parameter (alternative model), over random tries of n
nodes, is asymptotic to

n

L

[
1 +

∑
k≥2

ak(k + 1)

k(k − 1)2k

]
+ nδ(log2 n).

The numerical value of the constant of n (the quantity in the bracket) is 3.266982603 . . .

9. The W parameter for Patricia tries

A very similar treatment applies for Patricia tries, but the computations are simpler! We list
the key steps:

ln = 21−n
n∑
k=0

(
n

k

)
lk + 21−nn(n− 1)

for n ≥ 2; l0 = l1 = 0. Thus

L(z) = 2ez/2L( z
2
) +

z2

2
ez/2

and

M(z) = 2M( z
2
) +

z2

2
e−z/2,

whence

mn = 21−nmn + n(n− 1)(−1)n22−n =
n(n− 1)(−1)n2

2n−1 − 1
and

ln =
n∑
k=2

(
n

k

)
(−1)k

2k(k − 1)

2k−1 − 1
.

The asymptotic evaluation of this is conveniently done by Rice’s method, with the result:
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Theorem 14. The average ln of the W parameter over random Patricia tries of n nodes, is
asymptotic to

2n

L
+ nδ(log2 n).

Note once again that we use δ(x) in a generic sense; in each appearance it will denote a
(possibly) different periodic function (with mean zero).

10. The w parameter in tries and suffix trees

The material presented in this section was originally presented in one of these author’s thesis
(see [War05], [WS05]) and was utilized in an analysis of the Lempel-Ziv ’77 algorithm (see
[LSW07]). Here, we make several improvements. For instance, we avoid a recurrence relation
in the proof of Theorem 15, by instead using a direct combinatorial argument at the outset.
Similarly, in the proof of Theorem 16, we now utilize a very general combinatorial pattern
matching technique (concerning correlations of words with borders).

10.1. Setup. Throughout our discussion, we work with the binary alphabet A = {0, 1}.
In this section, we analyze the w parameter in two cases.
In the first case, we analyze the w parameter for a particular insertion into a trie built over

n + 1 independent strings. In other words, we consider the scenario where n + 1 independent
strings X(1), . . . , X(n+1) are used to build a trie. We study the w parameter associated with
the external node containing X(i) for some fixed i. Since the inserted strings are i.i.d., then
without loss of generality, we let i = n + 1; in other words, we study the w parameter of the
last insertion into the trie. [This is in contrast to the previous sections of this report, where
we study the a-th leaf, listed in order from left-to-right.] We let wn denote the w parameter of
the (n + 1)st insertion in the trie. In other words, wn enumerates the number of leaves in the
subtree rooted at the (n+ 1)st leaf inserted, excluding the (n+ 1)st leaf itself.

In the second case, we analyze the w parameter for the last (i.e., (n + 1)st) insertion into a
suffix tree built from the first n+ 1 suffixes of a common string. We write this as wn.

10.2. Main Results. We obtain similar results in both of the cases just mentioned. In fact,
we will utilize the results of Theorem 15 to establish the results of Theorem 16.

Theorem 15. Consider a binary memoryless source with probabilities p and q := 1 − p of
generating “0” and “1”, respectively, and let h := −p log p − q log q denote the entropy rate.
Insert n+ 1 strings X(1), . . . , X(n+1) into a trie. Then there exist δ > 0 and ε > 0 such that

E[uwn ] = −q log(1− pu) + p log(1− qu)

h
+ γ(log1/p n, u) +O(n−δ),

E[(wn)j] =
(j − 1)!(q(p/q)j + p(q/p)j)

h
+ γj(log1/p n) +O(n−ε), (10.1)

where γ(·, u) and γj are periodic functions with mean 0 and small modulus if log p/ log q is
rational, or asymptotically zero otherwise.

Thus wn asymptotically follows the logarithmic series distribution, i.e., the leading asymptotic
term is

P{wn = j} ≈ pjq + qjp

jh
, (10.2)

plus some additional small, fluctuating terms if log p/ log q is rational.
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Theorem 16. Consider a binary memoryless source with probabilities p and q := 1 − p of
generating “0” and “1”, respectively, and let h := −p log p − q log q denote the entropy rate.
Insert the first n + 1 suffixes of a common string into a suffix tree. In other words, if X =
X1X2X3 . . ., then define X(j) = XjXj+1Xj+2 . . . for each j, and construct a suffix tree by
building a trie from the strings X(1), X(2), . . . , X(n+1). Then, as in Theorem 15, there exist
δ > 0 and ε > 0 such that (10.1) and (10.2) hold.

10.3. Proof of Theorem 15. The proof technique of Theorem 15 is basically as follows: We
first determine P{wn = k} exactly, using a combinatorial observation. Then we define two
generating functions associated with the distribution and the j-th moment of wn, respectively.
We utilize a Poisson transform to change from a model with fixed n (recall that the number
of strings inserted into the trie is n + 1) to a model where there are N + 1 strings, where N
is a random variable with Poisson distribution and mean n. Afterwards, we utilize the Mellin
transform and its inverse to find the distribution and j-th moment in the Poissonized model.
Finally, we use depoissonization techniques to find the analogous asymptotic behavior of E[uwn ]
and of E[(wn)j] in the original model.

Lemma 17. Let w denote the longest prefix of both X(n+1) and at least one other X(i). Write

β := X
(n+1)
|w|+1 (i.e., β denotes the (|w| + 1)st symbol of X(n+1)) and α = 1 − β. Then wn = k

if and only if k of the strings X(1), . . . , X(n) have wα as a prefix and the other n − k of these
strings do not have w as a prefix.

Proof. By definition, X(n+1) has common prefix w with some other X(i), but X(n+1) has no
longer prefix in common with any other X(i). So a string is placed in the subtree rooted at the
father of X(n+1)’s leaf if and only if the string begins with w. Only X(n+1) begins with wβ, so
wn enumerates exactly the words that begin with prefix wα. �

It follows immediately from Lemma 17 that

P{wn = k} =
∑

w∈A∗, α∈A

P(wβ)

(
n

k

)
P(wα)k(1− P(w))n−k. (10.3)

The following two generating functions will aid us in computing the asymptotics of (respec-
tively) the distribution of wn and the j-th factorial moment of wn. We define

G(z, u) :=
∑
n≥0

E[uwn ]
zn

n!
,

Fj(z) :=
∑
n≥0

E[(wn)j]
zn

n!
, (10.4)

with w0 := 0 by convention. Applying (10.3) to (10.4) for n ≥ 1 yields

G(z, u) = 1 +
∑

w∈A∗, α∈A

P(wβ)
(
ez(1−P(w)+uP(wα)) − ez(1−P(w))

)
,

Fj(z) =
∑

w∈A∗, α∈A

P(wβ)ez(1−P(wβ))(P(wα)z)j.

Now we consider a model where, instead of inserting n+ 1 strings into the trie, we insert N + 1
strings into the trie, where N is a Poisson random variable with mean n. We emphasize that
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the results we obtain in this poissonized model must be translated back to the original model
at the end of the proof.

If we insert N + 1 strings into the trie, where N is a Poisson random variable with mean n,
then the generating functions analogous to G(z, u) and Fj(z) are

G̃(z, u) :=
∑

n≥0, k≥0

P{wn = k}uk z
n

n!
e−z,

F̃j(z) :=
∑
n≥0

E[(wn)j]
zn

n!
e−z. (10.5)

We observe that

G̃(z, u) = e−z +
∑

w∈A∗, α∈A

P(wβ)
(
e−zP(w)(1−uP(α)) − e−zP(w)

)
,

F̃j(z) =
∑

w∈A∗, α∈A

P(wβ)e−zP(wβ)(P(wα)z)j,

by applying (10.3) to (10.5).

In order to provide for the fundamental strip of G̃(x, u), we hope to have G̃(x, u) = O(x) as

x → 0, so we replace G̃(x, u) by defining Ĝ(x, u) := G̃(x, u) − 1. So for |u| ≤ min{p−1, q−1}
and <(s) ∈ 〈−1, 0〉, we have

Ĝ∗(s, u) = Γ(s)
q(1− pu)−s + p(1− qu)−s − p−s+1 − q−s+1

1− p−s+1 − q−s+1
.

Similarly, if j ∈ N and <(s) ∈ 〈−j, 0〉, then

F̃ ∗j (s) = Γ(s+ j)
pjq−s−j+1 + qjp−s−j+1

1− p−s+1 − q−s+1
.

The corresponding inverse Mellin transforms are

F̃j(x) =
1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

F̃ ∗j (s)x−s ds,

Ĝ(x, u) =
1

2πi

∫ − 1
2

+i∞

− 1
2
−i∞

Ĝ∗(s, u)x−s ds,

since c = −1/2 is in the fundamental strip of Ĝ(x, u) and F̃j(x).
We restrict attention to the case where log p/ log q is rational, say log p/ log q = r/t. Then,

a theorem of Jacquet and Schachinger (see [Szp01], Lemma 8.22) states that the poles of
1

1−p−s+1−q−s+1 are {ak = 2krπi/ log p | k ∈ Z}. So Ĝ∗(s, u)x−s and F̃ ∗j (s)x−s each have poles

only at the ak’s, each of which is a simple pole.
We define T1, T2, T3, T4 as follows:
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!(s)

"(s)
L + iA

L − iA

−1
2 + iA

−1
2 − iA

T1 T3

T2

T4

We note that (8.13) is equivalent to

Ĝ(x, u) = lim
A→∞

1

2πi

∫

T1

Ĝ∗(s, u)x−s ds

F̃j(x) = lim
A→∞

1

2πi

∫

T1

F̃ ∗
j (s)x−s ds (8.14)

and therefore

Ĝ(x, u) = lim
A→∞

(∑
−Res[Ĝ∗(s, u)x−s; s = ak] −

1

2πi

(∫

T2

+

∫

T3

+

∫

T4

)
Ĝ∗(s, u)x−s ds

)

F̃j(x) = lim
A→∞

(∑
−Res[F̃ ∗

j (s)x−s; s = ak] −
1

2πi

(∫

T2

+

∫

T3

+

∫

T4

)
F̃ ∗

j (s)x−s ds

)
.

(8.15)

We note that, by the smallness property of the Mellin transform (see [Szp01], page 402) that
1

2πi

(∫
T2

+
∫

T4

)
Ĝ∗(s, u)x−s ds = O(A−1) and 1

2πi

(∫
T2

+
∫

T4

)
F̃ ∗

j (s)x−s ds = O(A−1). Also (see

[Szp01], page 408), 1
2πi

∫
T3

Ĝ∗(s, u)x−s ds = O(x−L) and 1
2πi

∫
T3

F̃ ∗
j (s)x−s ds = O(x−L). Thus, if

we use h = −p ln p− q ln q to denote the entropy of the underlying probability source, it follows
that

G̃(x, u) = −
q ln(1 − pu) + p ln(1 − qu)

h
+ γ(log1/p x, u) + O(x−L)

F̃j(x) =
(j − 1)!(q(p/q)j + p(q/p)j)

h
+ γj(log1/p x) + O(x−L) (8.16)

where, if ln p/ ln q = r/t is rational, we have

γ(t, u) =
∑

k∈Z\{0}

−
e2krπitΓ(ak)(q(1 − pu)−ak + p(1 − qu)−ak − p−ak+1 − q−ak+1)

p−ak+1 ln p + q−ak+1 ln q

γj(t) =
∑

k∈Z\{0}

−
e2krπitΓ(ak + j)(pjq−ak−j+1 + qjp−ak−j+1)

p−ak+1 ln p + q−ak+1 ln q
. (8.17)

If ln p/ ln q is irrational, then γj(x) → 0 as x → ∞ and γ(x, u) → 0 uniformly for |u| ≤
min{p−1, q−1} as x → ∞. So γ and γj(γ, u) do not exhibit fluctuation when ln p/ ln q is
irrational.

By Cauchy’s theorem and the smallness property of the Mellin transform (see [Szp01]),

G̃(x, u) = −q log(1− pu) + p log(1− qu)

h
+ γ(log1/p x, u) +O(x−L),

F̃j(x) =
(j − 1)!(q(p/q)j + p(q/p)j)

h
+ γj(log1/p x) +O(x−L),

where h = −p log p− q log q denotes the entropy of the underlying probability source. Also, if
log p/ log q = r/t is rational, we have

γ(t, u) =
∑

k∈Z\{0}

−e
2krπitΓ(ak)(q(1− pu)−ak + p(1− qu)−ak − p−ak+1 − q−ak+1)

p−ak+1 log p+ q−ak+1 log q
,

γj(t) =
∑

k∈Z\{0}

−e
2krπitΓ(ak + j)(pjq−ak−j+1 + qjp−ak−j+1)

p−ak+1 log p+ q−ak+1 log q
.

If log p/ log q is irrational, then γj(x) → 0 as x → ∞ and γ(x, u) → 0 uniformly for |u| ≤
min{p−1, q−1} as x → ∞. So γ and γj(γ, u) do not exhibit fluctuation when log p/ log q is
irrational.

Finally, we must translate these results from the current model (the Poisson model) back to
the original model, using depoissonization. We refer to the depoissonization lemmas of [JS98]

and [Szp01]. (See [War05] for details.) This allows us to translate the results about G̃(z, u)

and F̃j(z) into analogous results about E[uwn ] and E[(wn)j], up to lower-order terms, which
completes the proof of Theorem 15.

10.4. Proof of Theorem 16. The proof technique of Theorem 16 is ultimately made by
comparing the generating functions for wn in the trie and suffix tree cases. We first define
MT (z, u) and MS(z, u) to denote the bivariate generating functions associated with wn in the
independent trie and suffix tree cases, respectively. We first prove some results about the
autocorrelation polynomial Sw(z), which is used to precisely describe the extent to which a
word w ∈ A∗ has overlaps with itself. We also must prove that MS(z, u) can be analytically
extended from the unit disk to a slightly larger disk. Then we determine the poles of MT (z, u)
and MS(z, u). Finally, we use residue analysis to prove that MT (z, u) and MS(z, u) are closely
related in a very narrow sense. We conclude that the w parameter has asymptotically the same
behavior, up to first order, in both tries built over independent strings and in suffix trees.

We use MT (z, u) to denote the bivariate generating function for wn in the trie setup above:

MT (z, u) :=
∞∑
n=1

∞∑
k=1

P{w(trie)
n = k}ukzn.
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Using the observation from (10.3), it follows very easily that

MT (z, u) =
∑

w∈A∗, α∈A

uP(β)P(w)

1− z(1− P(w))

zP(w)P(α)

1− z(1 + uP(w)P(α)− P(w))
. (10.6)

We define MS(z, u) in an analogous way to MT (z, u):

MS(z, u) :=
∞∑
n=1

∞∑
k=1

P{w(suffix tree)
n = k}ukzn.

In order to understand MS(z, u), we need to define the autocorrelation polynomial of a word
w ∈ A∗. We write m = |w|, and we let P(w) denote the set of positions k of w satisfying
w1 . . . wk = wm−k+1 . . . wm; in other words, w’s prefix of length k exactly matches w’s suffix
of length k. For ease of notation, we also write wmk+1 := wk+1 . . . wm. Now we define the
autocorrelation polynomial of w as

Sw(z) :=
∑

k∈P(w)

P(wmk+1)zm−k.

The autocorrelation polynomial Sw(z) records the extent to which a word w has overlaps with
itself. Informally, with high probability, we expect Sw(z) to be close to 1, because most words
w have only a trivial overlap (where w entirely overlaps with itself) and perhaps some very
small overlaps of a short prefix of w with a short suffix of w; long overlaps of w with itself are
very rare. The autocorrelation polynomial has been discussed extensively; see, for instance,
[GO81a], [GO81b], [RS98], [Lot05].

We are able to use the autocorrelation polynomial to compute the following useful result
about MS(z, u).

Theorem 18. Let Dw(z) = (1 − z)Sw(z) + zmP(w), where Sw(z) denotes the autocorrelation
polynomial of w. Then

MS(z, u) =
∑

w∈A∗, α∈A

uP(β)P(w)

Dw(z)

Dwα(z)− (1− z)

Dw(z)− u(Dwα(z)− (1− z))

for |u| < 1 and |z| < 1.

Proof. We let w ∈ A∗ denote the longest word that occurs both as a prefix of X(n+1) and as a
prefix of at least one other X(i). We also let β ∈ A denote the (|w| + 1)st symbol of X(n+1).
Then wn = k if and only if exactly k strings X(i) (1 ≤ i ≤ n) have wα as a prefix and the other
n− k such strings do not have w as a prefix. So we use combinatorics on words to enumerate
strings X that have exactly k occurrences of wα, followed by an occurrence of wβ, with no

other occurrences of w. In other words, we enumerate the language Rwα(T (α)
w )k−1T (α)

w β, where

Rw = {v | v contains exactly one occurrence of w, located at the right end}
T (α)
w = {v | wαv contains exactly two occurrences of w, located at the left and right ends}.

These languages have generating functions

Rw(z) :=
∑
v∈Rw

P(v)z|v| and T (α)
w (z) :=

∑
v∈T (α)

w

P(v)z|v|.
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It follows immediately that

MS(z, u) =
∞∑
k=1

∑
w∈A∗, α∈A

∑
s∈Rw

P(sα)z|s|+1u
( ∑
t∈T (α)

w

P(tα)z|t|+1u
)k−1 ∑

v∈T (α)
w

P(vβ)z|v|+1−|w|−1.

From [RS98], we know Rw(z)/z|w| = P(w)/Dw(z), so we simplify to obtain

MS(z, u) =
∑

w∈A∗, α∈A

uP(β)P(w)

Dw(z)

P(α)zT
(α)
w (z)

1− P(α)zuT
(α)
w (z)

. (10.7)

To obtain an explicit form of T
(α)
w (z), we define

Mw := {v | wv contains exactly two occurrences of w, located at the left and right ends},
H(α)
w :=Mw ∩ (αA∗).

We observe that αT (α)
w = H(α)

w . Thus, (10.7) simplifies to

MS(z, u) =
∑

w∈A∗, α∈A

uP(β)P(w)

Dw(z)

H
(α)
w (z)

1− uH(α)
w (z)

. (10.8)

So to complete the proof of Theorem 18, it suffices to prove

H(α)
w (z) =

Dwα(z)− (1− z)

Dw(z)
. (10.9)

To see this, we use correlation of words with borders, as discussed in [RS98].
We define H = {wα,wβ}; also let H1 = wα and H2 = wβ. We write

H =

[
P(H1) P(H1)
P(H2) P(H2)

]
.

We define AH,F = {Fm
k+1 | Hm

m−k+1 = F k
1 } as a generalization of the autocorrelation polynomial,

describing the overlap of H with F . This yields

Awα,wα(z) = Swα(z), Awα,wβ(z) = (Swα(z)− 1)P(β)/P(α),
Awβ,wα(z) = (Swβ(z)− 1)P(α)/P(β), Awβ,wβ(z) = Swβ(z).

Next we define D(z) = (1− z)A(z) + zm+1HT , where HT denotes the transpose of H, and where

A(z) :=

[
Awα,wα(z) Awα,wβ(z)
Awβ,wα(z) Awβ,wβ(z)

]
.

We also define M(z) = (D(z)+(z−1)I)D(z)−1, where I denotes the 2×2 identity matrix. Then

M1,2(z) =
(1− z)(Swα(z)− 1)P(β)/P(α) + zm+1P(wβ)

(1− z)Sw(z) + zmP(w)
. (10.10)

Because M1,2 = T (α)
w · β and H(α)

w = αT (α)
w , then (10.10) implies (10.9), which completes the

proof of Theorem 18. �
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Now we assume, without loss of generality, that p ≥ q. Note p ≤ √p < 1 so there exists
ρ > 1 such that ρ

√
p < 1, and thus ρp < 1 also. Finally, for ease of notation, we define δ :=

√
p.

We now make precise the notation that the autocorrelation polynomial

Sw(z) =
∑

k∈P(w)

P(wmk+1)zm−k

is close to 1 with high probability. (Recall that P(w) denotes the set of positions k of w such
that w1 . . . wk = wm−k+1 . . . wm.)

Lemma 19. If θ = (1− pρ)−1 > 1, then∑
w∈Ak

[[|Sw(ρ)− 1| ≤ (ρδ)kθ]]P(w) ≥ 1− δkθ.

Proof. See [FW05] or [JS94]; the proof is rather straightforward. �

The proof can very easily be strengthened to show that both Sw(z) and Swα(z) are simulta-
neously close to 1 with high probability:

Lemma 20. If θ = (1− pρ)−1 + 1 and α ∈ A, then∑
w∈Ak

[[max{|Sw(ρ)− 1|, |Swα(z)− 1|} ≤ (ρδ)kθ]]P(w) ≥ 1− δkθ

where [[A]] = 1 if A is true, and [[A]] = 0 otherwise.

Proof. This is an easy enhancement of the lemma above. �

Since Sw(z) is very close to 1 with high probability, then we expect that |Sw(z)| can be
bounded away from 0. To formalize this notation, we claim that if 0 < r < 1, then there exists
C > 0 (depending on r) such that

|Dw(z)− u(Dwα(z)− (1− z))| ≥ C (10.11)

for |z| ≤ r and |u| ≤ δ−1.
It follows that MS(z, u) can be analytically continued for all z and u with |u| ≤ δ−1 and
|z| < 1.

Now we find the zeroes of Dw(z)− u(Dwα(z)− (1− z)) for |u| ≤ δ−1 and (in particular) the
zeroes of Dw(z) (by setting u = 0). First we determine that (for |w| sufficiently large), there is
a unique such zero.

Lemma 21. There exists an integer K2 ≥ 1 such that, for u fixed (with |u| ≤ δ−1) and |w| ≥ K2,
there is exactly one root of Dw(z)− u(Dwα(z)− (1− z)) in the closed disk {z | |z| ≤ ρ}.

Proof. Apply Rouché’s Theorem; see [War05] for the details. �

When u = 0, this lemma implies (for |w| ≥ K2) that Dw(z) has exactly one root in the disk
{z | |z| ≤ ρ}.

We let Aw and Cw(u) denote the roots of Dw(z) and Dw(z)−u(Dwα(z)−(1−z)), respectively.
Also, we define

Bw = D′w(Aw),

Ew(u) = D′w(Cw)− u(D′wα(Cw) + 1).
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Now we have identified the relevant singularities of MS(z, u). We are ready to compare MS(z, u)
to MT (z, u).

10.4.1. Comparing Suffix Trees to Tries. Our ultimate goal is to show that MS(z, u) and
MT (z, u) have asymptotically similar behaviors.

We define

Q(z, u) = MS(z, u)−MT (z, u).

For ease of notation, we write

MT
w,α(z, u) =

uP(β)P(w)

1− z(1− P(w))

zP(w)P(α)

1− z(1 + uP(w)P(α)− P(w))
,

MS
w,α(z, u) =

uP(β)P(w)

Dw(z)

Dwα(z)− (1− z)

Dw(z)− u(Dwα(z)− (1− z))
.

We recall that, by (10.6) and Theorem 18,

Q(z, u) =
∑

w∈A∗, α∈A

(MS
w,α(z, u)−MT

w,α(z, u)).

We also define Qn(u) = [zn]Q(z, u). We denote the contribution to Qn(u) from a specific pair
w ∈ A∗ and α ∈ A as

Q(w,α)
n (u) := [zn](MS

w,α(z, u)−MT
w,α(z, u)).

Then we observe that

Q(w,α)
n (u) =

1

2πi

∮
(MS

w,α(z, u)−MT
w,α(z, u))

dz

zn+1
,

where the path of integration is a circle about the origin with counterclockwise orientation.
We define

I(w,α)
n (ρ, u) =

1

2πi

∫
|z|=ρ

(MS
w,α(z, u)−MT

w,α(z, u))
dz

zn+1
. (10.12)

By Cauchy’s theorem, it follows that

Q(w,α)
n (u) = I(w,α)

n (ρ, u)− Resz=Aw
MS

w,α(z, u)

zn+1
− Resz=Cw(u)

MS
w,α(z, u)

zn+1

+ Resz=1/(1−P(w))

MT
w,α(z, u)

zn+1
+ Resz=1/(1+uP(w)P(α)−P(w))

MT
w,α(z, u)

zn+1
. (10.13)

We compute

Resz=Aw
MS

w,α(z, u)

zn+1
= −P(β)P(w)

Bw

1

An+1
w

,

Resz=Cw(u)

MS
w,α(z, u)

zn+1
=

P(β)P(w)

Ew(u)

1

Cw(u)n+1
,

Resz=1/(1−P(w))

MT
w,α(z, u)

zn+1
= P(β)P(w)(1− P(w))n,

Resz=1/(1+uP(w)P(α)−P(w))

MT
w,α(z, u)

zn+1
= −P(β)P(w)(1 + uP(w)P(α)− P(w))n, (10.14)
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and then it follows from (10.13) that

Q(w,α)
n (u) = I(w,α)

n (ρ, u) +
P(β)P(w)

Bw

1

An+1
w

− P(β)P(w)

Ew(u)

1

Cw(u)n+1

+ P(β)P(w)(1− P(w))n − P(β)P(w)(1 + uP(w)P(α)− P(w))n. (10.15)

We next determine the contribution of the z = Aw terms of MS(z, u) and the z = 1/(1−P(w))
terms of MT (z, u) to the difference Qn(u) = [zn](M(z, u) −M I(z, u)). The proof involves a
straightforward application of the Mellin transform. All details can be found in [War05].

Lemma 22. The “Aw terms” and the “1/(1 − P(w)) terms” (for |w| ≥ K2) altogether have
only O(n−ε) contribution to Qn(u), i.e.,

∑
|w|≥K2, α∈A

(
−Resz=Aw

MS
w,α(z, u)

zn+1
+ Resz=1/(1−P(w))

MT
w,α(z, u)

zn+1

)
= O(n−ε),

for some ε > 0.

Now we bound the contribution to Qn(u) from the Cw(u) terms of MS(z, u) and the z =
1/(1 + uP(w)P(α)− P(w)) terms of MT (z, u).

Lemma 23. The “Cw(u) terms” and the “1/(1 + uP(w)P(α) − P(w)) terms” (for |w| ≥ K2)
altogether have only O(n−ε) contribution to Qn(u), for some ε > 0. More precisely,

∑
|w|≥K2, α∈A

(
−Resz=Cw(u)

MS
w,α(z, u)

zn+1
+ Resz=1/(1+uP(w)P(α)−P(w))

MT
w,α(z, u)

zn+1

)
= O(n−ε).

Next, we note that the I
(w,α)
n (ρ, u) terms in (10.15) have O(n−ε) contribution to Qn(u).

Lemma 24. The “I
(w,α)
n (ρ, u) terms” (for |w| ≥ K2) altogether have only O(n−ε) contribution

to Qn(u), for some ε > 0. More precisely,∑
|w|≥K2, α∈A

I(w,α)
n (ρ, u) = O(n−ε).

Proof. The proof relies on Lemmas 20 and 21. A complete proof is given in [War05]. �

Words w with short length also have altogether asymptotically small contribution to Qn(u).
To see this, we note that |w| has a normal distribution with mean 1

h
log n and variance θ log n,

where h = −p log p − q log q denotes the entropy of the source, and θ is a constant. So the
probability of having |w| ≤ K2 is extremely small, and as a result, the contribution to Qn(u)
from words w with |w| ≤ K2 is very small.

Lemma 25. The terms
∑
|w|<K2, α∈A(MS

w,α(z, u) − MT
w,α(z, u)) altogether have only O(n−ε)

contribution to Qn(u).

All contributions to (10.15) have now been analyzed. We are finally prepared to summarize
our results.
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10.4.2. Summary and Conclusion. Combining the last four lemmas, we see that Qn(u) =
O(n−ε) uniformly for |u| ≤ δ−1, where δ−1 = p−1/2 > 1 (recall we are assuming, without
loss of generality, that p > q). Finally, we apply Cauchy’s theorem again. We compute

P{Mn = k} − P{M I
n = k} = [ukzn]Q(z, u) = [uk]Qn(u) =

1

2πi

∫
|u|=p−1/2

Qn(u)

uk+1
du.

Since Qn(u) = O(n−ε), it follows that

|P{Mn = k} − P{M I
n = k}| ≤ 1

|2πi|
(2πp−1/2)

O(n−ε)

(p−1/2)k+1
= O(n−εpk/2).

So MS
n and MT

n have asymptotically the same distribution, and therefore MS
n and MT

n asymp-
totically have the same factorial moments. Thus Theorem 16 follows from Theorem 15.

11. Conclusion

We have studied the w parameter and its variants, in order to describe what happens on the
fringe of a random tree. This analysis has been carried out for a variety of tree classes. It is
captivating from an combinatorial view point since many different methods are necessary to
study the w parameter for all the classes we considered. We refrained from studying more tree
classes (for instance, plane-oriented recursive trees), because this report is already quite lengthy.
The emphasis of our study is on illustrating how different methods of analytic combinatorics
are combined, rather than on a thorough analysis. Therefore, for several tree classes, we
dispensed with computing the limiting distributions and confined ourselves with expectation
and/or variance only. We hope that this report will inspire further research on this intriguing
parameter3 and its variants, as well as other tree parameters.
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