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Abstract: Sums of products of two Gaussian q -binomial coefficients with a parametric rational weight function are

considered. The partial fraction decomposition technique is used to evaluate the sums in closed form. Interesting

applications of these results to certain generalized Fibonomial and Lucanomial sums are provided.
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1. Introduction

Define the second-order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

The Binet forms are

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn (1 + qn)

with q = β/α = −α−2 , so that α = i/
√
q .

When α = 1+
√
5

2 (or equivalently q = (1−
√
5 )/(1+

√
5 ) ), the sequence {Un} is reduced to the Fibonacci

sequence {Fn} and the sequence {Vn} is reduced to the Lucas sequence {Ln} .
Throughout this paper we will use the following notations: the q -Pochhammer symbol (x; q)n = (1 −

x)(1− xq) . . . (1− xqn−1) and the Gaussian q -binomial coefficients as[
n

k

]
z

=
(z; q)n

(z; q)k(z; q)n−k
.

When z = q, we denote (q; q)n by (q)n .

Furthermore, we will use generalized Fibonomial coefficients{
n

k

}
U

=
UnUn−1 . . . Un−k+1

U1U2 . . . Uk
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with
{
n
0

}
U
= 1, where Un is the nth generalized Fibonacci number.

When Un = Fn , the generalized Fibonomial coefficients are reduced to the Fibonomial coefficients

denoted by
{
n
k

}
F
: {

n

k

}
F

=
FnFn−1 . . . Fn−k+1

F1F2 . . . Fk
.

The link between the generalized Fibonomial and Gaussian q -binomial coefficients is

{
n

k

}
U

= αk(n−k)

[
n

k

]
q

with q = −α−2.

Furthermore, we will use generalized Lucanomial coefficients

{
n

k

}
V

=
VnVn−1 . . . Vn−k+1

V1V2 . . . Vk

with
{
n
k

}
V
= 1, where Vn is the nth generalized Lucas number.

When Vn = Ln , the generalized Lucanomial coefficients are reduced to the Lucanomial coefficients

denoted by
{
n
k

}
L
: {

n

k

}
L

=
LnLn−1 . . . Ln−k+1

L1L2 . . . Lk
.

The link between the generalized Lucanomial and Gaussian q -binomial coefficients is

{
n

k

}
V

= αk(n−k)

[
n

k

]
−q

with q = −α−2.

Recently Kılıç and Prodinger [3, 4] computed various sums including Gaussian q -binomial coefficients

with certain rational weight functions. A typical example from [4] is

2n∑
k=0

[
2n

k

]2
q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−1) = (−1)nq−

n
2 (3n+1)

[
2n

n

]
q

[
3n+ 1

n

]
q

.

From [3], recall that for any positive integer w , any nonzero real number a , nonnegative integer n , and

integers t and r such that t+ n ≥ 0 and r ≥ −1,

n∑
j=0

[
n

j

]
q

(−1)jq(
j+1
2 )+jt

(aqj ; qw)r+1

= a−t(q; q)n

( r∑
j=0

(−1)j

(qw; qw)j (q
w; qw)r−j

qw(
j+1
2 )−twj

(aqwj ; q)n+1

+ (−1)r+1
t−r−1∑
j=0

[
n+ j

n

]
q

[
t− 1− j

r

]
qw

qw(
r+1
2 )+(j−t)rwaj

)
.
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In [5], Kılıç and Prodinger evaluated

n∑
k=0

{
n

k

}2

U

Uλ1k+r1 . . . Uλsk+rs

in closed form where ri and λi ≥ 1 are integers. The authors give a systematic approach to compute these

sums. For example, it was shown that for nonnegative n ,

2n∑
k=0

{
2n

k

}2

U2
2k = ∆

{
2n

n

}
U ;2

U3
2nU2n+1

V2n−1V2n
,

where ∆ = p2 + 4.

Marques and Trojovsky [6] provided various sums including Fibonomial coefficients and Fibonacci and

Lucas numbers. For example, for positive integers m and n, they showed that

4m+2∑
j=0

(−1)
j(j+1)

2

{
4m+ 2

j

}
L2m+1−j = −

{
4m+ 2

4n+ 3

}
F4n+3

F2m+1

and
4m+2∑
j=0

(−1)
j(j−1)

2

{
4m

j

}
Fn+4m−j =

1

2
F2m+n

4m∑
j=0

(−1)
j(j−1)

2

{
4m

j

}
L2m−j .

Recently the generalized Fibonomial coefficients have attracted the interest of several authors. For their

properties, we refer to [1,2,6-8].

In this paper we will compute three types of sums involving products of the Gaussian q -binomial

coefficients. They are of the following forms: for any real number a

SUM =
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2)(a− qk),

SUM =
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2) 1

q−k − a

and

SUM =

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

(−1)kq−nk+(k+1
2 ) a− q−k

b− q−k
.

Then we will present interesting applications of our results to generalized Fibonomial and Lucanomial
sums.

2. The main results

We start with the first kind of sums:

Theorem 1 For any real a and n ≥ 0

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2)(a− qk) = (−1)n
[
aq−(

n+1
2 ) − q(

n+1
2 )

]
.

709
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Proof Rewrite the LHS as

n∑
k=0

(1− qk+1) . . . (1− qk+n)

(q)k(q)n−k
(−1)kq−nk+(k2)(a− qk)

or
n∑

k=0

(q−k − q1) . . . (q−k − qn)

(q)k(q)n−k
(−1)kq(

k
2)(a− qk).

Now set

f(z) :=
(z − q) . . . (z − qn)

(1− z)(1− zq) . . . (1− zqn)

(
a− 1

z

)
.

Then the partial fraction expansion reads

f(z) =

n∑
k=0

(q−k − q1) . . . (q−k − qn)

(q)k(q)n−k (1− zqk)
(−1)kq(

k+1
2 )(a− qk) +

C

z
.

If we multiply this by z and then let z → ∞ , then we get

a(−1)nq−(
n+1
2 ) =

n∑
k=0

(q−k − q1) . . . (q−k − qn)

(q)k(q)n−k
(−1)kq(

k
2)(a− qk) + C,

where

C = −(−1)nq(
n+1
2 ).

Thus
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2)(a− qk) = (−1)n
[
aq−(

n+1
2 ) − q(

n+1
2 )

]
,

as claimed. 2

As a consequence of the result above, we have the following corollaries:

Corollary 1 For n ≥ 0 , all integers r and m ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

(−1)kn+
1
2k(k+1)Uk+rn+m = (−1)

1
2n(n−1)Un(n+1+r)+m.

Proof If we convert the claimed identity into q -notation, it takes the form

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

q−nk+(k2)
(
1− qk+rn+m

)
(−1)k = (−1)nq−(

n+1
2 )

(
1− qn(n+1+r)+m

)
.

Since (1− qk+rn+m) = qrn+m(q−rn−m − qk), the result follows by taking a = q−rn−m in Theorem 2.1.

2
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Corollary 2 For n ≥ 0 , all integers r and m ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

Unr+m−k(−1)kn+
1
2k(k+1) = (−1)m+nr− 1

2n(n−1)Un(n−r+1)−m.

Proof If we convert the claim into q -form, then we should prove

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
1− qnr+m−k

)
qk(1−n)+(k2) (−1)

k
= (−1)nqm+nr− 1

2n(n+1)
(
1− qn(n−r+1)−m

)
.

Rewrite the LHS as

−
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(
qnr+m − qk

)
q−nk+(k2)(−1)k,

then the result follows by taking a = qnr+m in Theorem 2.1. 2

Corollary 3 For n ≥ 0 , all integers r and m ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

Vnr+k+m(−1)kn+
1
2k(k+1) = −(−1)

1
2n(n−1)Vm+n(n+r+1).

Proof If we convert the claimed identity into q -form, then we need to prove

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
1 + qnr+k+m

)
q−nk+(k2)(−1)k = (−1)n+1q−(

n+1
2 )

(
1 + qnr+mqn(n+1)

)
.

Rewrite its LHS as

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
1 + qnr+k+m

)
q−nk+(k2)(−1)k = −qnr+m

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
−q−nr−m − qk

)
q−nk+(k2)(−1)k.

Now the result follows by taking a = −q−nr−m in Theorem 2.1. 2

Corollary 4 For n ≥ 0 , all integers r and m ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

Vnr+m−k(−1)kn+(
k
2) = (−1)nr+m−(n2)Vn(n+1−r)−m.

Proof In q -form, we have to prove the identity

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
1 + qnr+m−k

)
q−nk+(k2)qk(−1)k = (−1)n

(
qnr+mq−(

n+1
2 ) + q(

n+1
2 )

)
.

The result follows again by taking a = −qnr+m in Theorem 2.1. 2
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Theorem 2 For n ≥ 0 and any real a ,

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2) 1

q−k − a
= an

(
qa−1; q

)
n

(a; q)n+1
.

Proof Consider
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2) 1

z − a
,

which we rewrite as
n∑

k=0

(q−k − q1) . . . (q−k − qn)

(q)k(q)n−k
(−1)kq(

k
2) 1

z − a
.

Now define

A(z) :=
(z − q) . . . (z − qn)

(1− z)(1− zq) . . . (1− zqn)

1

z − a
.

The partial fraction decomposition of A(z) takes the form

A(z) =
n∑

k=0

(q−k − q1) . . . (q−k − qn)

(q−k − a) (q; q)k(q; q)n−k (1− zqk)
(−1)kq(

k+1
2 ) +

F (n, a)

z − a
.

Now we multiply this relation by z and then let z → ∞ and obtain

0 = lim
z→∞

( n∑
k=0

(q−k − q1) . . . (q−k − qn)(−1)kq(
k+1
2 )

(q; q)k(q; q)n−k (q−k − a)

z

1− zqk
+

zF (n, a)

z − a

)
,

which gives us the equation

0 =
n∑

k=0

(q−k − q1) . . . (q−k − qn)(−1)k−1q(
k
2)

(q; q)k(q; q)n−k (q−k − a)
+ F (n, a)

or

n∑
k=0

(q−k − q1) . . . (q−k − qn)(−1)kq(
k
2)

(q; q)k(q; q)n−k (q−k − a)
= F (n, a),

where

F (n, a) =
(z − q) . . . (z − qn)

(1− z)(1− zq) . . . (1− zqn)

∣∣∣∣
z=a

=
(a− q)

(
a− q2

)
. . . (a− qn)

(1− a)(1− aq) . . . (1− aqn)
= an

(q/a; q)n
(a; q)n+1

,

which completes the proof. 2

As a consequence of the result above, we have the following corollaries:
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Corollary 5 For n ≥ 0 and m > 0 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

1

Un+m−k
(−1)kn+(

k+1
2 ) = (−1)(

n
2) 1

Um

{
n+m

n

}−1

U

{
2n+m

n

}
U

.

Proof In q -form, we have to prove the corresponding identity:

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(
1− qn+m−k

)−1
q−nk+(k2)(−1)k = (−1)nq−(

n+1
2 ) 1

1− qm

[
n+m

n

]−1

q

[
2n+m

n

]
q

.

Consider its LHS as

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

1

1− qn+m−k
q−nk+(k2)(−1)k

= − 1

qn+m

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

1

(q−k − q−n−m)
q−nk+(k2)(−1)k,

which, by taking a = q−(n+m) in Theorem 2.6, equals

= −q−(n+1)(m+n)

(
qn+m+1; q

)
n

(q−n−m; q)n+1

= (−1)nq−(n+1)(m+n)q−m(n+1)−n(n+1)/2
(q; q)m+n

(q; q)m−1

= (−1)nq−
1
2n(n+1) 1

1− qm
(q; q)m

(q; q)m+n

(q; q)2n+m

(q; q)n+m

= (−1)nq−
1
2n(n+1) 1

1− qm

[
n+m

n

]−1

q

[
2n+m

n

]
q

,

as claimed. 2

Corollary 6 For n > 0 and m ≥ 1 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

1

Vn+m−k
(−1)

kn+(k+1
2 ) = (−1)(

n
2) 1

Vm

{
n+m

m

}−1

V

{
2n+m

n

}
V

.

Proof We have to prove the corresponding identity in q -form:

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

q−nk+(k2) (−1)
k 1

(1 + qn+m−k)
= (−1)nq−(

n+1
2 ) 1

1 + qm

[
n+m

n

]−1

−q

[
2n+m

n

]
−q

.

If we take a = −q−n−m in Theorem 2.6, the claimed result follows after some rearrangements. 2

Corollary 7 For n,m ≥ 0 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

1

Vn−m−k
(−1)

kn+(k+1
2 ) =

1

2
(−1)(

m+1
2 )−(n2)

{
n

m

}
V

{
2n−m

n

}
V

.
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Proof We should prove the corresponding identity in q -form:

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

1

1 + qn−m−k
(−1)kq−nk+(k2) =

1

2
(−1)nq

1
2m(m+1)− 1

2n(n+1)

[
n

m

]
−q

[
2n−m

n

]
−q

.

Consider its LHS as

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

1

1 + qn−m−k
(−1)kq−nk+(k2)

= qm−n
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq−nk+(k2) 1

q−k + qm−n
,

which, by taking a = −qm−n in Theorem 2.6, equals

= qm−n
(
−qm−n

)n (
−qn−m+1; q

)
n

(−qm−n; q)n+1

= (−1)nq(n+1)(m−n)

(
−qn−m+1; q

)
n

(−qm−n; q)n+1

= (−1)nq(m−n)(n+1)
(−q; q)2n−m

(−q; q)n−m

q(n−m)(n−m+1)/2

2(−q; q)n−m (−q; q)m

=
1

2
(−1)nq

1
2m(m+1)− 1

2n(n+1)
(−q; q)2n−m

(−q; q)n−m (−q; q)n

(−q; q)n
(−q; q)n−m (−q; q)m

=
1

2
(−1)nq

1
2m(m+1)− 1

2n(n+1)

[
n

m

]
−q

[
2n−m

n

]
−q

,

as claimed. 2

Theorem 3 For n > 0 , any reals a and b ,

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

(−1)kq−nk+(k+1
2 ) a− q−k

b− q−k
= − (1− qn) bn−1 (a− b)

(q/b; q)n−1

(b; q)n+1

.

Proof We rewrite the LHS of the claim as

(1− qn)
n∑

k=0

(1− qk+1) . . . (1− qn+k−1)

(q)k(q)n−k
q

1
2k(k−2n+1)(−1)k

a− q−k

b− q−k

or

(1− qn)
n∑

k=0

(q−k − q1) . . . (q−k − qn−1)

(q)k(q)n−k
q(

k
2)(−1)k

a− q−k

b− q−k
.

Define

A(z) =
(z − q) . . . (z − qn−1)

(1− z) . . . (1− zqn)

a− z

b− z
.
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Then the partial fraction decomposition reads

A(z) =
n∑

k=0

q−k(n−1)(1− qk+1) . . . (1− qn+k−1)q(
k+1
2 )(−1)k

(q)k(q)n−k(1− zqk)

a− q−k

b− q−k
+

F

b− z
.

If we multiply this by z and then let z → ∞ , we find

0 =
n∑

k=0

q−k(n−1)(1− qk+1) . . . (1− qn+k−1)q(
k+1
2 )(−1)k

(q)k(−qk)(q)n−k

a− q−k

b− q−k
− F

=

n∑
k=0

q−k(n−1)(q)n+k−1q
(k2)(−1)k−1

(q)k(q)k(q)n−k

a− q−k

b− q−k
− F

=
(q)n−1

(q)n

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

q
1
2k(k−2n+1)(−1)k−1 a− q−k

b− q−k
− F

=
1

1− qn

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

q
1
2k(k−2n+1)(−1)k−1 a− q−k

b− q−k
− F.

Therefore
n∑

k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

q
1
2k(k−2n+1)(−1)k

a− q−k

b− q−k
= − (1− qn)F,

where

F =
(z − q) . . . (z − qn−1)

(1− z) . . . (1− zqn)
(a− z)

∣∣∣∣
z=b

=
(b− q) . . . (b− qn−1)

(1− b) (1− zb) . . . (1− bqn)
(a− b)

= (a− b)
bn−1 (1− q/b)

(
1− q2/b

)
. . .

(
1− qn−1/b

)
(b; q)n+1

= bn−1 (a− b)
(q/b; q)n−1

(b; q)n+1

.

Thus we get

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

q
1
2k(k−2n+1)(−1)k

a− q−k

b− q−k
= − (1− qn) bn−1 (a− b)

(q/b; q)n−1

(b; q)n+1

,

as claimed. 2

Corollary 8 For n , m > 0

n∑
k=0

{
n

k

}
U

{
n+ k − 1

k

}
U

(−1)
kn

(−1)
1
2k(k+1) Un+1−k

Un+m+k
= −(−1)

1
2n(n+1)U2n+m+1

Un+1

{
n+m− 1

m

}
U

{
2n+m

n+ 1

}−1

U

.
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Proof If we convert the claimed identity into q -form, then we have to prove the identity

n∑
k=0

[
n

k

]
q

[
n+ k − 1

k

]
q

q
1
2k(k−2n+3)(−1)k

1− qn+1−k

1− qn+m+k
= (−1)n+1q

1
2n(n−1) 1− q2n+m+1

1− qn+1

[
n+m− 1

m

]
q

[
2n+m

n+ 1

]−1

q

.

If we take a = q−n−1 and b = qn+m in Theorem 2.10, then we get the claimed identity after some rearrange-

ments. 2
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