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Abstract

According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane

tree which is a planted plane tree with each of its vertices colored with one of two colors and
qqppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free.

The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several

bijections. Especially, we found a bijection between the set of 2-plane trees of n+1 vertices with black

root and the set of ternary trees with n internal vertices. We also give a combinatorial proof for a

relation between the set of 2-plane trees of n + 1 vertices and the set of ternary trees with n internal

vertices.
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1 Introduction

Trees which were first studied by Cayley [1] play a very important role in combinatorics [9]

and appear in a large number of applications in other branches of mathematics. A rooted

tree is a tree in which a special vertex is singled out as the root of the tree. The number of

rooted trees with n vertices is enumerated by Sloane’s A000081 [8]. A vertex w is said to be

a child or successor of a vertex v if w is on the next lower level connected to v; the vertex v

is then said to be the parent of w. The degree of v is the total number of its children. A leaf

is a vertex with degree 0, that is a vertex with no child.

A rooted tree in which the children of each vertex are ordered is called a planted plane tree.

The number of planted plane trees of n + 1 vertices is enumerated by the Catalan number

Cn =
1

n + 1

(

2n

n

)

. (1.1)

A binary tree is a planted plane tree in which each vertex has at most two children and

each child of a vertex is designated as its left or right child [10].
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Prodinger and Tichy in [7] introduced the Fibonacci number f(G) of a (simple) graph G

as the total number of all Fibonacci subsets S of the vertex V (G) of G, where a Fibonacci

subset S is a (possibly empty) subset of V (G) such that any two vertices of S are not adjacent.

In graph theory, a Fibonacci subset is called independent or internally stable set of vertices.

Kirschenhofer et al. in [4] studied the total numbers of the Fibonacci subsets of some kinds

of trees, for instance, the binary trees, the t-ary trees, and the planted plane trees.

In [2], Gu et al. introduced the 2-binary tree which is defined as a binary tree with each of

its vertices colored with one of two colors, for instance, black or white and the root is colored

black. According to the definition, an edge e in a 2-binary tree is of the following eight types:qq pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ,
qa pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ,

aq pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ,
aa pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp ,

q qpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp , q apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp , a qpppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp , and
a apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp . They call a 2-binary tree T e-free if and only if there is no

edge of type e in T . In that paper, they studied several types of the 2-binary trees and found

bijections between those trees and other combinatorial structures. Especially, they built a

bijection between the set of
q apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free 2-binary trees with n vertices and the set of ternary trees

with n internal vertices. In [6], a simpler bijection between these two sets was presented.

In this paper, we introduce a new type of planted plane trees, where all the vertices of a

planted plane tree are colored with one of two colors, for instance, black or white. Combining

the new type trees with the Fibonacci subsets, we focus on the
qqppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free type.

Definition 1.1 A 2-plane tree is a planted plane tree with each of its vertices colored with

one of two colors, for instance, black or white and
qqppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free.

In Section 2, we show that there is a bijection between the set of the Fibonacci subsets of

planted plane trees of n vertices and the set of 2-plane trees of n vertices.

A ternary tree is a planted plane tree in which each vertex has degree 0 or 3, and each

child of a vertex is designated as its left, middle, or right child (see [3, 5]). In the literature,

this kind of tree is often called complete ternary tree.

The number of ternary trees with n internal vertices is enumerated by the generalized

Catalan number

Tn =
1

2n + 1

(

3n

n

)

. (1.2)

Here we give the following definition about ternary trees which is used in this paper.

Definition 1.2 For a ternary tree T , we define the leftmost path of l1 as l1l2 . . . ls where li+1

is the left child of li for i = 1, 2, . . . , s − 1. Likewise, we define the rightmost path of r1 as

r1r2 . . . rt where ri+1 is the right child of ri for i = 1, 2, . . . , t− 1.

In Section 2, we build a bijection between the set of 2-plane trees of n + 1 vertices with

black root and the set of ternary trees with n internal vertices. In Section 3, we give a

combinatorial proof for a relation between the set of 2-plane trees of n + 1 vertices and the

set of ternary trees with n internal vertices. Finally, in Section 4, we study some other

relations between 2-plane trees and ternary trees.
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2 2-Plane Trees with Black Root and Ternary Trees

In [7, Corollary 2], the authors studied the average numbers of the Fibonacci subsets of

planted plane trees of n vertices, and gave the following results.

Lemma 2.1 [7, Corollary 2] The average numbers of Fibonacci subsets of planted plane trees

of n vertices are given by:

(a) (not containing the root)

an :=

(

3n − 2

n− 1

)/(

2n− 2

n− 1

)

; (2.1)

(b) (containing the root)

bn :=
n

n− 1

(

3n − 3

n− 2

)/(

2n− 2

n− 1

)

; (2.2)

(c) (in total)

2

(

3n − 3

n− 1

)/(

2n− 2

n− 1

)

∼
√

3 ·
(

27

16

)n−1

, (n→∞); (2.3)

(d)
an

bn

= 3− 2

n
. (2.4)

Combining the Fibonacci subsets of planted plane trees with 2-plane trees, we have the

following lemma.

Lemma 2.2 The number of the Fibonacci subsets of planted plane trees of n vertices equals

to the number of 2-plane trees of n vertices.

Proof. Given a Fibonacci subset of a planted plane tree, we just color the vertices which

belong to the subset with black. Other vertices are colored with white. According to the

property of the Fibonacci subset that any two vertices in the Fibonacci subset can not be

connected by a edge, we find out that the tree we get is a 2-plane tree. Conversely, for a

2-plane tree, we select all the black vertices to form the Fibonacci subset. It is easy to see

that this map is a bijection.

Therefore, multiplying the average numbers in Theorem 2.1 by the Catalan number, we

count the numbers of 2-plane trees with black root or white root, respectively.

Lemma 2.3 The numbers of 2-plane trees of n vertices are given by:

(a) (with white root)

An :=
1

n

(

3n − 2

n− 1

)

; (2.5)
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(b) (with black root)

Bn :=
1

n− 1

(

3n− 3

n− 2

)

; (2.6)

(c) (in total)

Sn :=
2

n

(

3n− 3

n− 1

)

. (2.7)

Due to Lemma 2.1, Lemma 2.2, and Lemma 2.3, we obtain the following theorem by

noticing that Bn+1 = Tn.

Theorem 2.4 There is a bijection between the set of 2-plane trees of n+1 vertices with black

root and the set of ternary trees with n internal vertices.

Proof. We define a map α between these two sets recursively. For a ternary tree with n

internal vertices T , we illustrate the bijection by three steps to construct P as a 2-plane tree

of n + 1 vertices with black root. In each step, we use αi (i = 1, 2, 3) to denote the map.

Step 1:

We show the bijection α1 in Figure 2.1. First, we start with an extra black vertex e as the

root of P . Then we decompose the ternary tree T into subtrees whose roots are the vertices

on the longest rightmost path of the root v1 of T , and map these roots as the white children

of the extra black vertex e in turn.

The right picture in Figure 2.1 is the 2-plane tree P corresponding to α1(T ) with black

root e, where v′i (resp. R′

i) corresponds to vi (resp. Ri) for i = 1, 2, . . . , d in the ternary tree

T .
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Figure 2.1: Step 1 of the bijection α = α1

Now we map the subtrees with root vi for i = 1, 2, . . . , d by the following two steps. First,

we show the map for the left subtree of vi.

Step 2: In Figure 2.2, l1 and m1 are the left and middle children of vi, and l1l2 . . . ls is

the longest rightmost path of l1. First, we use α1 to map the subtree with root l1, and let

these white vertices l′1, l′2, . . ., l′s corresponding to l1, l2, . . ., ls be the children of v′i which

corresponds to vi. Then map the middle child of vi m1 to be a black vertex m′

1 as the right

brother of l′s. Here L′

i corresponds to Li in the ternary tree.

In the next step, we show the map for the middle subtree of vi.
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Figure 2.2: Step 2 of the bijection α = α2

Step 3: In Figure 2.3, the black vertex m′

1 corresponds to m1 which is the middle child of

vi just as we show in Figure 2.2. First, we use the map α1 to map the subtrees with roots k1

and t1, respectively. Let the corresponding white vertices k′

1, k
′

2, . . . , k
′

p be the children of m′

1

in turn, and let the corresponding white vertices t′1, t
′

2, . . . , t
′

q be the right brothers of m′

1 in

turn. Then m2 which is the middle child of m1 is mapped to be a black vertex as the right

brother of t′q, and the subtrees of m2 are mapped by using the map α3 recursively. That is

to say, the left subtree of m2 are mapped by α1 to be the subtrees of m′

2, the right subtree

of m2 are mapped by α1 to be the subtrees of v′i which are right next to the subtree with

the root m′

2, and the middle child of m2 is mapped to be a black child of vi right next to the

corresponding subtrees of the right subtree of m2.
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Figure 2.3: Step 3 of the bijection α = α3

According to the three steps, we can find a bijection between the set of 2-plane trees of

n + 1 vertices with black root and the set of ternary trees with n internal vertices.

Now we give an example in Figure 2.4 to explain the bijection.

According to the bijection α, we have the following corollaries.

Corollary 2.5 The number of the internal vertices on the longest rightmost path of the root

in the set of ternary trees with n internal vertices equals to the number of the root’s children

in the set of 2-plane trees of n + 1 vertices with black root.

Corollary 2.6 The number of the internal vertices as middle children in the set of ternary
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Figure 2.4: An example for the bijection α in Theorem 2.4

trees with n internal vertices equals to the number of the black vertices except for the black

root in the set of 2-plane trees of n + 1 vertices with black root.

Corollary 2.7 The number of the internal vertices as root, left, and right children in the set

of ternary trees with n internal vertices equals to the number of the white vertices in the set

of 2-plane trees of n + 1 vertices with black root.

In [2], the authors gave the following theorem about ternary trees and
q apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free 2-binary

trees, where a 2-binary tree is a binary tree with each of its vertices colored with one of two

colors, for instance, black or white and the root is colored black.

Theorem 2.8 ([2]) There is a bijection between the set of
q apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free 2-binary trees of n vertices

and the set of ternary trees with n internal vertices.

According to Theorem 2.4 and Theorem 2.8, we have the following corollary.

Corollary 2.9 There is a bijection between the set of 2-plane trees of n + 1 vertices with

black root and the set of
q apppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp -free 2-binary trees of n vertices.

3 A Relation between 2-Plane Trees and Ternary Trees

According to Equation (1.2) and Lemma 2.3, we obtain the following theorem.

Theorem 3.1 We have

2(2n + 1)Tn = (n + 1)Sn+1, (3.1)

where Tn denotes the number of ternary trees with n internal vertices, and Sn+1 denotes the

number of 2-plane trees with n + 1 vertices.

Here we describe Equation (3.1) in a bijective combinatorial way. The left-hand side of

Equation (3.1) can be interpreted as ternary trees with n internal vertices, where one of the

2n + 1 leaves is colored with one of the two colors blue or red. For convenience, we use b or

r to mark the colored leaf. We use En to denote this set. Similarly, the right-hand side of

Equation (3.1) can be interpreted as 2-plane trees of n + 1 vertices, where one of the n + 1

vertices is marked with the label a. We use Fn+1 to denote the set.
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We divide the sets En and Fn+1 into several parts, and then build the bijections between

these parts to build a combinatorial proof of Theorem 3.1.

First, we state the divided parts for the set En, and give the enumerative formula in each

case.

(1) Let Eb1 (resp. Er1) denote the set of ternary trees with n internal vertices, where one

of the middle leaves is marked with b (resp. r). The enumerative formula is
(3n−1

n−1

)

.

(2) Let Eb2 (resp. Er2) denote the set of ternary trees with n internal vertices, where one

of the left leaves on the leftmost path of a vertex which is a middle child or the root is

marked with b (resp. r). The enumerative formula is n+2
3(2n+1)

(

3n
n

)

.

(3) Let Eb3 denote the set of ternary trees with n internal vertices, where one of the right

leaves is marked with b, or one of the left leaves on the leftmost path of a right child is

marked with b. The enumerative formula is n
2n+1

(3n
n

)

.

(4) Let Er0 denote the set of ternary trees with n internal vertices, where v denotes the

right child of the root. If v is a right leaf, then v is marked with r; if v is an internal

vertex, then the left leaf on the leftmost path of v is marked with r. The enumerative

formula is 1
2n+1

(3n
n

)

.

(5) Let Er3 denote the set of ternary trees with n internal vertices, where one of the right

leaves is marked with r, or one of the left leaves on the leftmost path of a right child is

marked with r except for the case in the set Er0. The enumerative formula is n−1
2n+1

(3n
n

)

.

We use Fbi (resp. Fri) to denote the corresponding set of Ebi (resp. Eri) for i = 0, 1, 2, 3.

(1) Let Fb1 (resp. Fb2) denote the set of 2-plane trees of n + 1 vertices with black root,

where one of the white (resp. black) vertices is marked with a.

(2) Let Fr1 denote the set of 2-plane trees of n + 1 vertices with white root, where all

the children of the root are white, and one of the white vertices except for the root is

marked with a.

(3) Let Fr2 denote the set of 2-plane trees of n + 1 vertices with white root, where all the

children of the root are white, and one of the black vertices or the root is marked with

a.

(4) Let Fb3 denote the set of 2-plane trees of n + 1 vertices with white root, where the

leftmost child of the root is black, and one of the vertices except for the root is marked

with a.

(5) Let Fr0 denote the set of 2-plane trees of n + 1 vertices with white root, where the

leftmost child of the root is black, and the root is marked with a.

(6) Let Fr3 denote the set of 2-plane trees of n + 1 vertices with white root, where at least

one of the root’s children is black, and the leftmost child of the root is white. One of

the vertices is marked with a.
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Now we derive the enumerative formulas with generating functions of the above subsets.

Here we just list a few cases. Other cases are similar.

(1) Enumeration of Eb1

Let T be the generating function of ternary trees: T = 1+zT 3. Let A be the generating

function of ternary trees, where one of the middle leaves is marked with b. We have

A = 3zAT 2 + zT 2.

To read off coefficients, we use formal residue calculus. Set z = v/(1 + v)3, then

T = 1 + v, dz
dv

= 1−2v
(1+v)4

, and

A =
zT 2

1− 3zT 2
=

v
1+v

1− 3 v
1+v

=
v

1− 2v
.

Then

[zn]A =
1

2πi

∮

dz

zn+1
A

=
1

2πi

∮

dv(1 − 2v)(1 + v)3n+3

(1 + v)4vn+1

v

1− 2v

=
1

2πi

∮

dv(1 + v)3n−1

vn

= [vn−1](1 + v)3n−1 =

(

3n− 1

n− 1

)

.

Therefore, the number of ternary trees with n internal vertices, where one of the middle

leaves is marked with b is enumerated by
(3n−1

n−1

)

.

(2) Enumeration of Fb2

Let

B =
zv

1−W
and W =

z

1−B −W
enumerate the 2-plane trees, according to the vertices and the black vertices. B means

that the root is black, and W means that the root is white.

In this case, we are interested in F = Bv(z, 1) = (v2+v−1)v
(2v−1)(1+v)3

, with z = v
(1+v)3

and

B(z, 1) = v
(1+v)2

. Then

[zn+1]F =
1

2πi

∮

dz

zn+2
F

=
1

2πi

∮

dv(1 − 2v)(1 + v)3n+6

(1 + v)4vn+2

(v2 + v − 1)v

(2v − 1)(1 + v)3

=
1

2πi

∮

dv(1 + v)3n−1(1− v − v2)

vn+1

= [vn](1 + v)3n−1(1− v − v2)

= [vn](1 + v)3n−1 − [vn−1](1 + v)3n

=

(

3n− 1

n

)

−
(

3n

n− 1

)

=
n + 2

3(2n + 1)

(

3n

n

)

,

as desired. Therefore, the enumerative formula for Fb2 is n+2
3(2n+1)

(3n
n

)

.
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(3) Enumeration of Fr3

We have W = v
1+v

, B = v
(1+v)2

, and we need

F =
zW

1−B −W
− zW

1−W
=

v3

(1 + v)3
.

Then

[zn+1]F =
1

2πi

∮

dz

zn+2
F

=
1

2πi

∮

dv(1 − 2v)(1 + v)3n+6

(1 + v)4vn+2

v3

(1 + v)3

=
1

2πi

∮

dv(1 − 2v)(1 + v)3n−1

vn−1

= [vn−2](1− 2v)(1 + v)3n−1

=

(

3n− 1

n− 2

)

− 2

(

3n− 1

n− 3

)

=
n− 1

(2n + 1)(n + 1)

(

3n

n

)

.

Now we mark an arbitrary vertex, introducing a factor n + 1, and obtain, as desired

n− 1

2n + 1

(

3n

n

)

,

which enumerates the number of 2-plane trees of n + 1 vertices with white root, where

at least one of the root’s children is black, and the leftmost child of the root is white.

One of the vertices is marked with a.

According to the computations of the generating functions, we find an equation

B2 = zW, (3.2)

with z = v
(1+v)3

, W = v
1+v

, and B = v
(1+v)2

.

Now we give a combinatorial proof for Equation (3.2) in the following theorem.

Theorem 3.2 The number of 2-plane trees of n − 1 vertices with white root equals to the

number of the pairs of 2-plane trees, where each pair (ordered) with n vertices has two 2-plane

trees with black roots.

Proof. We define a bijection β between these two set. For a 2-plane tree of n − 1 vertices

with white root, let v1 denote the root. For the longest rightmost path of v1, there are two

cases:

(1) The longest rightmost path of v1 has at least one black vertex;

(2) The longest rightmost path of v1 has no black vertex.
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In each case, we use βi (i = 1, 2) to denote the map.

For the first case, we build the bijection β1 in Figure 3.5. The left picture is a 2-plane

tree of n− 1 vertices with white root. Let v1v2 . . . vmb1 . . . denote the longest rightmost path

of v1, where v1, v2, . . . , vm are all white vertices, and b1 is the first black vertex on the path

from the root. Ti (i = 1, 2, . . . ,m − 1) denotes all the subtrees of vi except for the subtree

with the root vi+1. B1 denotes all the subtrees of b1, and Tm denotes all the subtrees of vm

except for the subtree with the root b1.

First, cutting the edge vmb1 in the left picture in Figure 3.5, we let the subtree with root

b1 be the first 2-plane tree with black roots. Then we add an extra black vertex e as the root

of the second 2-plane tree, and let v1, v2, and vm be the white children of this black vertex.

Meanwhile, let Ti (i = 1, 2, . . . ,m) still be the subtrees of vi in the second 2-plane tree. Now

we get the ordered pair of 2-plane trees with n vertices.

c
@@�

��
T1

v1

c. . .�
��

T2

v2

c
@
@�

��
Tm

vm

s
�
��

B1

b1

←→β1
sb1

�
��

B1
+

se

c

�
�

��

�
��
T1

v1
c

�
�
��

�
��

T2

v2
. . . c

@
@

@@

�
��
Tm

vm

Figure 3.5: The bijection β = β1 for Case (1)

For the second case, we build the bijection β2 in Figure 3.6. The left picture is a 2-plane

tree of n− 1 vertices with white root. Let v1v2 . . . vmvm+1 denote the longest rightmost path

of v1, where v1, v2, . . . , vm, vm+1 are all white vertices, and Ti (i = 1, 2, . . . ,m) denotes all the

subtrees of vi except for the subtree with the root vi+1.

First, we add an extra black vertex e as the root of the first 2-plane tree, and let v1, v2,

vm be the white children of this black vertex. Meanwhile, let Ti (i = 1, 2, . . . , n) still be the

subtrees of vi in the first 2-plane tree. Then we only change the white vertex vm+1 to a black

vertex, and let this black vertex be the second 2-plane tree.
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Figure 3.6: The bijection β = β2 for Case (2)

It is easy to see that the map is a one-to-one correspondence.

In the following subsections, we build the bijections between the two sets in each pair,

where the pairs are {Eb1, Fb1}, {Eb2, Fb2}, {Eb3, Fb3}, {Er0, Fr0}, {Er1, Fr1}, {Er2, Fr2}, and

{Er3, Fr3}. We also give some combinatorial interpretations for the enumerative formulas.

For convenience, we use |Q| to denote the cardinality of a set Q.
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3.1 Bijections for {Eb1, Fb1} and {Er1, Fr1}

Lemma 3.3 There is a bijection between Eb1 and Fb1. Let Eb1 denote the set of ternary

trees with n internal vertices, where one of the middle leaves is marked with b. Similarly,

let Fb1 denote the set of 2-plane trees of n + 1 vertices with black root and one of the white

vertices is marked with a. The enumerative formula is
(3n−1

n−1

)

.

Proof. For a ternary tree T ∈ Eb1, we use the bijection α in Theorem 2.4 to construct the

corresponding 2-plane tree of n + 1 vertices with black root P . Then we give an algorithm

to mark one of the white vertices with label a in this 2-plane tree with black root.

The algorithm is described as follows.

For a ternary tree T , we start with the middle leaf which is marked with b. Put a label v

on this leaf.

Step 1: If the father of v is a middle child, then move the label v to the father, and repeat

Step 1. Otherwise, go to Step 2.

Step 2: Mark the corresponding vertex in P for the father of v with label a, and end the

algorithm.

According to the bijection α in Theorem 2.4 and Corollary 2.7 , we notice that the marked

vertex in P is white.

It is obvious that the map is a one-to-one correspondence.

In fact, |Eb1| denotes the number of the middle leaves in the set of ternary trees with

n internal vertices. We can prove that the number of the middle leaves is one third of the

number of all the leaves. For a ternary tree with n internal vertices and one marked middle

leaf v, let l (resp. r) denote the left (resp. right) brother of v. After exchanging the marked

leaf with the subtree with root l or v, respectively, we obtain two different ternary trees with

one marked left or right leaf. According to Equation (1.2), the number of middle leaves in

the set of ternary trees with n internal vertices is enumerated by

|Eb1| =
2n + 1

3
Tn =

(

3n− 1

n− 1

)

. (3.3)

For example, in Figure 2.4, if the middle child of v4 is marked with b, then we mark v′2
with label a. If the middle child of v7 is marked with b, then we mark v′1 with label a.

According to the proof of Lemma 3.3, we can easily get the following corollary.

Corollary 3.4 The number of the middle leaves in the set of ternary trees with n internal

vertices equals to the number of the white vertices in the set of 2-plane trees of n + 1 vertices

with black root. The enumerative formula is
(

3n−1
n−1

)

.

Lemma 3.5 There is a bijection between Er1 and Fr1. We use Er1 to denote the set of

ternary trees with n internal vertices, where one of the middle leaves is marked with r. Like-

wise, we use Fr1 to denote the set of 2-plane trees of n + 1 vertices with white root, where all

11



the children of the root are white, and one of the white vertices except for the root is marked

with a. The enumerative formula is
(

3n−1
n−1

)

.

Proof. According to the proof of Lemma 3.3, for a ternary tree in Er1, we only need to change

the extra black root to a white root in the corresponding 2-plane tree. The enumerative

formula for Er1 is same as that for Eb1.

3.2 Bijections for {Eb2, Fb2} and {Er2, Fr2}

Lemma 3.6 There is a bijection between Eb2 and Fb2. Let Eb2 denote the set of ternary trees

with n internal vertices, where one of the left leaves on the leftmost path of a vertex which

is a middle child or the root is marked with b. Similarly, let Fb2 denote the set of 2-plane

trees of n + 1 vertices with black root, where one of the black vertices is marked with a. The

enumerative formula is n+2
3(2n+1)

(3n
n

)

.

Proof. For a a ternary tree with n internal vertices T ∈ Eb2, we still use the bijection α in

Theorem 2.4 to get a 2-plane tree P of n + 1 vertices with black root. Now we mark one of

the black vertices in the 2-plane tree.

If the marked left leaf is on the leftmost path of a middle child, then we put a label a on

the corresponding black vertex of this middle child in the corresponding 2-plane tree P ; if

the marked left leaf is on the leftmost path of the root, then we mark the black root with

label a in the corresponding 2-plane tree P .

According to the map, we can obviously find the inverse map.

In the set of ternary trees with n internal vertices, we can see that |Eb2| denotes the number

of the internal vertices which are the middle children or the root. We also observe that |Eb1|
denotes the number of internal vertices which are the left children, the right children, or the

root. According to Equation (1.2), we get the following relation:

|Eb2| = nTn − |Eb1|+ Tn =
n + 2

3(2n + 1)

(

3n

n

)

. (3.4)

For example, in Figure 2.4, if the left child of v3 is marked with b, then we mark e with

label a. If the left child of v8 is marked with b, then we mark v′7 with label a.

Corollary 3.7 The number of the marked left leaves on the leftmost paths of the vertices

which are the middle children or the root (or the number of the internal vertices which are

the middle children or the root) equals to the number of the black vertices in 2-plane trees of

n + 1 vertices with black root. The enumerative formula is n+2
3(2n+1)

(3n
n

)

.

Lemma 3.8 There is a bijection between Er2 and Fr2. We use Er2 to denote the set of

ternary trees with n internal vertices, where one of the left leaves on the leftmost path of a

vertex which is a middle child or the root is marked with r. Similarly, we use Fr2 to denote

the set of 2-plane trees of n + 1 vertices with white root, where all the children of the root are

12



white, and one of the black vertices or the root is marked with a. The enumerative formula

is n+2
3(2n+1)

(

3n
n

)

.

Proof. According to the proof of Lemma 3.6, for a ternary tree in Er2, we only need to change

the extra black root to white root in the corresponding 2-plane tree. The enumerative formula

for Er2 is same as that for Eb2.

3.3 Bijections for {Eb3, Fb3} and {Er0, Fr0}

Before we give the bijection for the first set, we state the following proposition which can

simplify our bijection.

Proposition 3.9 There is a bijection between the set of ternary trees with n internal vertices,

where one of the internal vertices is marked and the set of ternary trees with n internal

vertices, where one of the right leaves is marked, or one of the left leaves on the leftmost path

of a right child is marked.

Proof. Let M denote the set of ternary trees with n internal vertices, where one of the internal

vertices is marked. Let N denote the set of ternary trees with n internal vertices, where one

of the right leaves is marked, or one of the left leaves on the leftmost path of a right child is

marked.

For a marked internal vertex in a ternary tree which belongs to M , let v denote its right

child. Now we use the following map to get a ternary tree which belongs to N .

Step 1: Let the father of v be unmarked.

Step 2: If v is a leaf, then we mark the leaf v; if v is a internal vertex, then we find the

longest leftmost path of v, and mark the left leaf on this path.

It is easy to see that the map is a one-to-one correspondence.

According to Proposition 3.9, we can rewrite the sets Eb3, Er0, and Er3.

• Let Eb3 denote the set of ternary trees with n internal vertices, where one of the internal

vertices is marked with b.

• Let Er0 denote the set of ternary trees with n internal vertices, where the root is marked

with r.

• Let Er3 denote the set of ternary trees with n internal vertices, where one of the internal

vertices except for the root is marked with r.

Lemma 3.10 There is a bijection between Eb3 and Fb3. Let Eb3 denote the set of ternary

trees with n internal vertices, where one of the internal vertices is marked with b. Similarly,

let Fb3 denote the set of 2-plane trees of n + 1 vertices with white root, where the leftmost

child of the root is black, and one of the vertices except for the root is marked with a. The

enumerative formula is n
2n+1

(3n
n

)

.
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Proof. For a ternary tree T ∈ Eb3, the map is just like the bijection described in Figure 2.3.

But we only consider the tree with the root m1 as a ternary tree T in the left picture. In the

right picture, let v′i denote an extra white root. Since the root m1 in T is mapped to be a

black vertex m′

1, we ensure that the leftmost child of the root is black in the corresponding

2-plane tree. The corresponding vertex of the marked vertex in T is labeled by a. It is easy

to see that this map is a bijection.

According to Equation (1.2), the enumerative formula for Eb3 is

|Eb3| = nTn =
n

2n + 1

(

3n

n

)

. (3.5)

In Figure 3.7, we use the ternary tree which is given in Figure 2.4 to show the bijection

in Lemma 3.10. v6 is marked with b in the ternary tree, and v′6 is labeled with a.
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Figure 3.7: Bijection in Lemma 3.10

Lemma 3.11 There is a bijection between Er0 and Fr0. We use Er0 to denote the set of

ternary trees with n internal vertices, where the root is marked with r. Likewise, we use Fr0

to denote the set of 2-plane trees of n + 1 vertices with white root, where the leftmost child of

the root is black, and the root is marked with a. The enumerative formula is 1
2n+1

(3n
n

)

.

Proof. According to the proof of Lemma 3.10, we only need to change the rule for mapping

the marked vertex. When the root of a ternary tree which belongs to Er0 is marked with

r, we use the bijection in Lemma 3.10 to map the tree and put a label a on the root of the

corresponding 2-plane tree which obviously belongs to Fr0.

It is easy to see that the enumerative formula for Er0 is

|Er0| = Tn =
1

2n + 1

(

3n

n

)

. (3.6)

3.4 Bijection for {Er3, Fr3}

Lemma 3.12 There is a bijection between Er3 and Fr3. Let Er3 denote the set of ternary

trees with n internal vertices, where one of the internal vertices except for the root is marked

with r. Likewise, let Fr3 denote the set of 2-plane trees of n + 1 vertices with white root,

where at least one of the root’s children is black, and the leftmost child of the root is white.

One of the vertices is marked with a. The enumerative formula is n−1
2n+1

(3n
n

)

.
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Proof. We divide the set Er3 into three parts according to the fact that for a ternary tree

T ∈ Er3, the marked vertex can be in the left, middle, or right subtree of the root. Then we

build three bijections to get the set Fr3.

Let A1 (resp. A2 or A3) denote the set of ternary trees with n internal vertices, where

the marked vertex is in the left (resp. middle or right) subtree of the root.

We also divide the set Fr3 into three parts A′

i for i = 1, 2, 3. In Figure 3.8, for a 2-plane

tree with the root v′0 in Fr3, v′s is the root’s first black child from the left side. If the marked

vertex is in the area S′

i, then this 2-plane tree belongs to the set A′

i, for i = 1, 2, 3.
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Figure 3.8: 2-plane trees in Fr3

Now we build the bijection βi between Ai and A′

i for i = 1, 2, 3. For convenience, we define

two kinds of bijective maps which are included in the bijection α in Theorem 2.4. These maps

are used in the following proof.

Let αw denote the bijection which is described in Figure 2.1. Here we consider the tree

with root v1 in the left picture. We map the tree to a bunch of subtrees with white roots and

attach them to a vertex e.

Let αb denote the bijection which is described in Figure 2.3. Here we only consider the

tree with root m1 in the left picture. We map the tree to a bunch of subtrees with black or

white roots and attach them to a vertex v′i. Notice that the root m′

1 of the leftmost 2-plane

subtree is black.

1. Bijection between A1 and A′

1

For a ternary tree T ∈ A1, the marked internal vertex is in the left subtree of the root. We

show the bijection β1 in Figure 3.9. In the left picture, Let Ri (i = 1, . . . ,m−1,m+1, . . . , d)

denote the left and middle subtrees of vi, and Lj (j = 2, 3, 4, 5) includes the left, middle, and

right subtrees of wj. The marked vertex with label r is in the area R which includes the

subtree with root vm where the right subtree of vm is empty. In the right picture, v′i (resp.

w′

i, R′

i or L′

i) corresponds to vi (resp. wi, Ri or Li).

We observe that for a ternary tree T ∈ Er3, the vertices v0 and vm must exist. By

removing these two vertices, we get six subtrees:

(1) Let T1 denote the subtree with root v1 where the longest rightmost path of v1 is

v1 . . . vm−1.

(2) Let T2 denote the subtree with root w2.
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Figure 3.9: The bijection β1

(3) Let T3 denote the subtree with root w3.

(4) Let T4 denote the subtree with root w4.

(5) Let T5 denote the subtree with root w5.

(6) Let T6 denote the subtree with root vm+1 where the longest rightmost path of vm+1 is

vm+1 . . . vd.

Now we use the bijections αw and αb to build the corresponding 2-plane tree P . See

Figure 3.9.

We analyze that for a 2-plane tree P ∈ Fr3, the white root, the root’s leftmost white child,

and the root’s leftmost black child must exist:

Step 1: Put an extra white vertex e as the root of P .

Step 2: Let the white vertex v′m be the first white child of the root e from the left side,

and let the black vertex v′0 be the first black child of the root e from the left side.

Step 3: We apply the bijection αw to the subtrees T1, T2, T4, and T6, then apply the

bijection αb to the subtrees T3 and T5. The location of the corresponding 2-plane subtrees is

shown in Figure 3.9. We can see that there are exactly six positions for the corresponding

trees of Ti (i = 1, 2, . . . , 6).

In order to state the bijection β1 clearly, we illustrate the positions in Figure 3.10.

We give an example to show the bijection β1 in Figure 3.11, where v6 (resp. v′6) is marked

with r (resp. a).

2. Bijection between A2 and A′

2

For a ternary tree T ∈ A2, we exchange the left subtree and the middle subtree of the root

in the left picture in Figure 3.9. The marked vertex in T is vm or in T4 or T5. Therefore, v0

and vm must exist. We map v0 and vm to the root’s first white child and first black child from

the left side, respectively. Removing the vertices v0 and vm from T , we still get six subtrees.
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Figure 3.11: An example for the bijection β1

In Figure 3.12, we show the bijection β2. Here we apply the bijection αw to the subtrees T1,

T2, T4, and T5, then apply the bijection αb to the subtrees T3 and T6. The marked vertex

with label a is v′m or in T ′

4 or in T ′

5.
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Figure 3.12: The bijection β2

We give an example to explain the bijection β2 in Figure 3.13, where v6 (resp. v′6) is

marked with r (resp. a).

3. Bijection between A3 and A′

3

For a ternary tree T ∈ A3, we exchange the left subtree and the right subtree of the root

in the left picture in Figure 3.9. The marked vertex in T is vm or in T4 or T5. Therefore,

v0 and vm must exist. We map v0 to be the root’s first black child from the left side, and

map vm to be the root in the corresponding 2-plane tree. The extra white vertex is the root’s

first white child from the left side. Removing the vertices v0 and vm from T , we still get the

six subtrees. In Figure 3.14, we show the bijection β3. Here we apply the bijection αw to

the subtrees T1, T3, T4, and T6, then apply the bijection αb to the subtrees T2 and T5. The
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Figure 3.13: An example for the bijection β2

marked vertex with label a is v′m or in T ′
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Figure 3.14: The bijection β3

We give an example to explain the bijection β3 in Figure 3.15, where v6 (resp. v′6) is

marked with r (resp. a).
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Figure 3.15: An example for the bijection β3

Since we should put a label on one internal vertex except for the root, we have n − 1

options for each ternary tree. Therefore, the enumerative formula for Er3 is

|Er3| = (n− 1)Tn =
n− 1

2n + 1

(

3n

n

)

. (3.7)
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After we prove all the seven pairs of the subsets for the sets En and Fn+1, we finally prove

Theorem 3.1. According to the enumerative formula for each case, we have

|En| = |Eb1|+ |Er1|+ |Eb2|+ |Er2|+ |Eb3|+ |Er0|+ |Er3|

= 2(2n + 1)Tn

= 2

(

3n

n

)

. (3.8)

4 Other Relations between 2-Plane Trees and Ternary Trees

Theorem 4.1 There is a bijection between the set of ternary trees with n internal vertices,

where one of the internal vertices is marked and the set of 2-plane trees of n+1 vertices with

black root, where one of the vertices except for the root is marked.

Proof. For a ternary tree with n internal vertices, let v denote the marked internal vertex.

First we use the bijection α in Theorem 2.4 to map the ternary tree to a 2-plane tree of n+1

vertices with black root. Then we mark the corresponding vertex of v.

Theorem 4.2 There is a bijection between the set of ternary trees with n internal vertices,

where a left/middle/right leaf which does not belong to the right subtree of the root is marked

and the set of 2-plane trees of n vertices with white root, where one of the vertices is marked.

Proof. We first prove the case that the left leaf is marked in the ternary tree. For a ternary

tree T with n internal vertices, let v denote the marked left leaf which does not belong to

the right subtree of the root. First put a label w on the father of v. Then we move the right

subtree of the root and let v be the root of this subtree. Finally, we obtain a new ternary

tree T1 with n internal vertices where the right subtree of the root is empty.

Now we map this new ternary tree T1 to a 2-plane tree of n vertices with white root by

using the bijection αw and αb. See Figure 4.16.
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0
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R
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��
R
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Figure 4.16: The bijection in Theorem 4.2

Step 1: Map the root v0 of T1 to be the white root v′0 of the 2-plane tree.

Step 2: Apply the bijection αw to the left subtree Rl, and apply the bijection αb to the

middle subtree Rm. Then we attach the corresponding R′

l and R′

m to v′0 in turn.

Step 3: Mark the corresponding vertex of w in the 2-plane tree.

It is easy to see that the map is a one-to-one correspondence.
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For other cases that in a ternary tree a middle/right leaf which does not belong to the

right subtree of the root is marked, the proof is similar to the proof of the above case.

We give an example in Figure 4.17 to explain the bijection in Theorem 4.2, where the left

child of v6 is marked with label b, and v′6 is marked with label a.
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Figure 4.17: An example for Theorem 4.2

For the enumeration of the set of 2-plane trees of n vertices with white root, where one of

the vertices is marked, we use the equation (2.5) in Lemma 2.3.

The number of 2-plane trees of n vertices with white root is given by

An :=
1

n

(

3n− 2

n− 1

)

. (4.1)

Therefore, for the 2-plane trees of n vertices with white root, where one of the vertex is

marked, the number is
(3n−2

n−1

)

.

According to Theorem 4.2, for ternary trees with n internal vertices, where a left/middle/right

leaf which does not belong to the right subtree of the root is marked, the number is also
(3n−2

n−1

)

.

Theorem 4.3 There is a bijection between the set of ternary trees with n internal vertices,

where a left/middle/right leaf is marked and the set of 2-plane trees of n + 1 vertices with

black root, where one of the vertices in the rightmost subtree of the root is marked.

Proof. We only prove the case that a left leaf of ternary trees with n internal vertices is

marked. For a ternary tree T with n internal vertices, let v denote the marked left leaf,

and let v0 denote the root of T . We find the longest rightmost path of v0 in T denoted by

v0v1v2 . . . vm. Assume that v is in the subtree with the root vi which belongs to the rightmost

path of v0. Now we construct the corresponding 2-plane tree.

Step 1: Put a label w on the father of the marked leaf v.

Step 2: Move the right subtree of vi which is the subtree with the root vi+1, and let v be

the root of this subtree.

Step 3: Apply the bijection α in Theorem 2.4 to this new ternary tree, and mark the

corresponding vertex of w.

It is obvious that the marked vertex in the 2-plane tree is in the rightmost subtree of the

root.

It is easy to see that the map is a one-to-one correspondence.
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