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ABSTRACT. The sequence A120986 in the Encyclopedia of Integer Sequences counts ternary
trees according to the number of nodes and the number of middle edges. Using a certain
substition, the underlying cubic equation can be factored. This leads to an extension of the
concept of (3/2)-ary trees, introduced by Knuth in his christmas lecture from 2014.

1. INTRODUCTION

The recent preprint [2] triggered my interest in the sequence A120986 in [4]. The double-
indexed sequence enumerates ternary trees according to the number of edges and the number
of middle edges. We consider here T (n, k), the number of ternary trees with n nodes and
k middle edges. The difference is marginal, but we want to compare/relate our analysis
with [5], and there it is also the number of nodes that is considered. Let G = G(x , u) =
∑

n,k≥0 T (n, k)xnuk. Then it is easy to see (decomposition at the rooot) that

G = 1+ xG2(1− u+ uG).

The substitution

x =
t(1− t)2

(1− t + ut)
makes the cubic equation manageable and also allows, as in [5], to introduce a (refined)
version of the (3/2)-ary trees.

Here is a small table of these numbers and a ternary tree:

n\k 0 1 2 3 4 5
0 1
1 1
2 2 1
3 5 6 1
4 14 28 12 1
5 42 120 90 20 1
6 132 495 550 220 30 1
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FIGURE 1. Ternary tree with 17 nodes and 3 middle edges

2. ANALYSIS OF THE CUBIC EQUATION

The cubic equation has the following solutions:

r1 =
1

1− t
,

r2 =
−t + t2 − t2u+

p

t(1− t + ut)(4u+ t − 4ut − t2 + t2u)
2ut(1− t)

,

r3 =
−t + t2 − t2u−

p

t(1− t + ut)(4u+ t − 4ut − t2 + t2u)
2ut(1− t)

.

Note that

r2r3 = −
1− t + ut
ut(1− t)

.

The root with the combinatorial significance is r1. But it is the explicit form of the two other
roots that makes everything here interesting and challenging.

We extract coefficients of r1 using contour integration, which is closely related to the La-
grange inversion formula. The path of integration is a small circle in the x-plane which is
then transformed into a small circle in the t-plane.

[xn]r1 =
1

2πi

∮

d x
xn+1

1
1− t

=
1

2πi

∮

d t(1− t)(1− 3t + 2t2 − 2t2u)
(1− t + tu)2

(1− t + tu)n+1

tn+1(1− t)2n+2

1
1− t

= [tn](1− 3t + 2t2 − 2t2u)
(1− t + tu)n−1

(1− t)2n+2
.

Furthermore

[xnuk]r1 = [t
n][uk](1− 3t + 2t2 − 2t2u)

(1− t + tu)n−1

(1− t)2n+2

= [tn]
�

n− 1
k

�

tk(1− 2t)
(1− t)n+k+2

− 2[tn]
�

n− 1
k− 1

�

tk+1

(1− t)n+k+2
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=
�

n− 1
k

�

[tn−k]
(1− 2t)
(1− t)n+k+2

− 2
�

n− 1
k− 1

�

[tn−k−1]
1

(1− t)n+k+2

=
�

n− 1
k

��

2n+ 1
n− k

�

− 2
�

n− 1
k

��

2n
n− k− 1

�

− 2
�

n− 1
k− 1

��

2n
n− k− 1

�

=
1
n

�

n
k

��

2n
n− 1− k

�

.

For u= 1, which means that the middle edges are not especially counted, we get
∑

k

1
n

�

n
k

��

2n
n− 1− k

�

=
1
n

�

3n
n− 1

�

,

the number of ternary trees with n nodes.

3. FACTORIZING THE SOLUTION OF THE CUBIC EQUATION

For u = 1, Knuth [5] was able to factor the generating function r1 into two factors, for
which he coined the catchy name (3/2)-ary trees. For this factorization, see also [6, 1]. The
goal in this section is to perform this factorization in the context of counting middle edges,
i. e., for the generating function with the additional variable u. In Knuth’s instance, the
generating function was expressible as a generalized binomial series (in the sense of Lambert
[3]), but that does not seem to be an option here.

Note that
1
r2
=

t
2
−
p

t
p

t(1− t) + u(2− t)2

2
p

1− t + tu
and

1
r3
=

t
2
+
p

t
p

t(1− t) + u(2− t)2

2
p

1− t + tu
.

From the cubic equation we deduce that

r1 = −
1

ux r2r3
,

which is the desired factorization. The factor ux will be fairly split as
p

ux ·
p

ux , whereas
the minus sign goes to the factor 1/r2. In the following we work out how this factorization
can be obtained. To say it again, it is not as appealing as in the original case.

Let us write

t = xΦ(t), with Φ(t) =
1− t + tu
(1− t)2

,

so that we can use the Lagrange inversion formula to get

[xn]t` =
`

n
[tn−`]Φ(t)n
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and

[xnuk]t` =
`

n
[tn−`][uk]

(1− t + tu)n

(1− t)2n

=
`

n
[tn−`−k]
�

n
k

�

1
(1− t)n+k

=
`

n

�

n
k

��

2n− `− 1
n− `− k

�

.

In particular,

t =
∑

n≥1

xn
∑

0≤k≤n

1
n

�

n
k

��

2n− 2
n− 1− k

�

uk;

this series expansion may be used in the following developments whenever needed.
To proceed further, we set u= 1+ U and τ= t/u:

1
r2
=

t
2
−
p

x
2(1− t)

Æ

4− 3t + U(2− t)2,

1
r3
=

t
2
+
p

x
2(1− t)

Æ

4− 3t + U(2− t)2

Since the first term is well understood, we concentrate on the second:
p

x
2(1− t)

Æ

4− 3t + U(2− t)2

=
p

ux
�

1+
1
8
(5+ 4U)τ+

1
128
(71+ 136U + 64U2)τ2

+
1

1024
(541+ 1596U + 1568U2 + 512U3)τ3 + · · ·

�

=:
p

ux ·Ξ.

With this expanded form Ξ, we have now our final formula, the expansion of r1 into two
factors:

r1 =
1

1− t
= −

1
ux

1
r2

1
r3
=
�

−
1
p

ux
t
2
+Ξ
�� 1
p

ux
t
2
+Ξ
�

.

These two factors do not have a combinatorial meaning, as it seems, but we can still stick to
the (3/2)-ary tree notation, with the additional counting of middle edges.
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