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Abstract. In this paper we prove the optimality and other properties of the τ -adic non-
adjacent form: this expansion has been introduced in order to efficiently compute scalar
multiplications on Koblitz curves. We also refine and extend results about double expan-
sions of scalars introduced by Avanzi, Ciet and Sica in order to further improve scalar mul-
tiplications. Our double expansions are optimal and their properties are carefully analysed.
In particular we provide first and second order terms for the expected weight, determine the
variance and prove a central limit theorem. Transducers for all the involved expansions are
provided, as well as automata accepting all expansions of minimal weight.

1. Introduction

In 1985 Miller [14] and Koblitz [12] independently proposed to design cryptosystems
around the group of rational points of an elliptic curve over a finite field. The perfor-
mance of any such cryptosystem depends on the efficiency of their fundamental operation,
the scalar multiplication: Given a point P and an integer s, compute sP . The generic way of
computing scalar multiplications is to use a double-and-add method (isomorphic to a Horner
scheme) and a (possibly redundant) base 2 representation of the scalar, the representation of
choice being the width-w non-adjacent form, or w-NAF, independently introduced by Miyaji
et al. [15] and Solinas [21] (see also [1, 17, 16] for more properties and similar methods).

Some families of elliptic curves have arithmetic properties which can be successfully ex-
ploited to considerably speed up this operation. Noteworthy are the curves defined by

(1) Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1}
over a finite field F2n . They were first proposed by Koblitz [13], whence their name Koblitz
curves. Solinas [20, 21] called them anomalous binary curves. The benefit of using them
comes from the fact that a scalar multiplication can be performed very efficiently using
the Frobenius endomorphism τ . This is the map induced on the curve by the Frobenius
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automorphism of the field extension F2n/F2, which maps a field element to its square. In
fact, the evaluation of the Frobenius is much faster than the addition of two distinct points
on the curve or the computation of the double of a given point: τ consists just in the squaring
of the coordinates, and if a suitable representation of the field F2n is chosen squarings are
computationally almost free operations.

Instead of computing sP using a double-and-add method, one uses an expression
∑n′

i=0 siτ
i

with n′ / n—by this it is understood that n′ ≤ n + c for a small absolute constant c—and

such that sP =
∑n′

i=0 siτ
i(P ). Such an expression can be evaluated easily via a Horner

scheme, resulting in an algorithm using only repeated applications of τ interspersed with
additions of the base point P . Solinas introduced a method for computing the si’s efficiently
leading to a “representation” of any given scalar s where on average n/3 of the si are non-
zero. His representation satisfies the syntactical property sisi+1 = 0, akin to that of the non
adjacent form of any integer. Because of this his recoding is called the τ -NAF.

Knudsen [11] and Schroeppel [19] independently proposed a technique to speed up scalar
multiplication on all elliptic curves over binary fields based on point halving. This method
computes the multiple R of any point P of odd order such that 2R = P and R ∈ 〈P 〉. The
point R is denoted as 1

2
P . Since for curves of order twice a prime point halving is up to three

times as fast as point doubling, it is possible to improve performance of scalar multiplication
by expanding the scalar using “powers of 1/2” and replacing the double-and-add algorithm
with a halve-and-add method.

The present paper deals with properties of integer expansions which are associated to
Koblitz curves, as well as with techniques combining point halving and Frobenius expansions
introduced in [2]. The latter, which are used to improve the speed of scalar multiplication, are
extended in an optimal way, and a complexity analysis of the resulting methods is provided.

The techniques in [2] stem from the following observation. Let Q := τ( 1
2
P ). There exist

expressions of the form
∑k

i=0 εiτ
i where εi ∈ {0,±1}, ε0εk 6= 0 with the property that

∑k
i=0 εiτ

i(P ) =
∑k′

i=0 δiτ
i(Q) for suitable δi’s in {0,±1}—but the number of non-zero δi’s

is considerably smaller than the amount of non-zero εi’s. In [2] three different types of such
expressions are presented which are then used to compute sP as

(2)

n1
∑

i=0

s
(1)
i τ i(P ) +

n2
∑

i=0

s
(2)
i τ i(Q)

with n1, n2 / n. Whereas in Solinas’ method, the number of non-zero coefficients among the

s
(j)
i is n/3 on average, this method reduces this number to 2n/7. The scalar multiplication

can be performed without additional precomputations but doubling the number of Frobenius
applications. This still leads to a non-negligible speed-up (cf. [2, Algorithm 3]). Alternatively,
Q can be precomputed and the number of Frobenius applications corresponds to Solinas’
method.

All the expressions presented in [2] share the property that only two of the δi’s are non-
zero. Ciet’s thesis [3] contains a heuristic approach for deriving more complicated expressions
from the given ones—but the resulting improvement is minimal. A brute-force search on a
computer reveals that there is at least another family of τ -adic expressions simplifying to
an expression with two non-zero coefficients, and this has been the starting point for the
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present research. The main aim of this paper is to refine the methods in [2] and [3] giving
an optimal splitting of the type (2), and to give a more precise complexity analysis.

It also turned out that some information about the τ -NAF was apparently missing from the
literature. In particular, we found no proof that the τ -NAF is a τ -adic recoding of minimal
weight. Also, explicit transducers for computing the τ -NAF have not been described. Exactly
as for the NAF, the τ -NAF is some recoding of minimal weight, but it is not the only minimal
expansion. However, the non-adjacency property implies that every number has a unique
τ -NAF. We then provide automata that accept as valid inputs only the recodings of minimal
weight. These results are collected in Section 2.

In the section that follows we turn our attention to the double expansions of type (2).
We introduce a double expansion which we call the wide-double-NAF, prove that it has
minimal weight among all the double expansions, and provide automata that validate the
double expansions of minimal weight. The average weight of the wide-double-NAF is n/4.
Transducers computing the wide-double-NAF of scalars are also provided, which can be triv-
ially transformed in recoding algorithms that employ table look-ups. Finally, a complexity
analysis with second order terms, variance and a central limit theorem is given.

Section 4 contains a refined analysis of the “double digits” in the wide-double-NAF.
An appendix contains some illustrations showing fractals that appear when evaluating

some τ -NAFs, as well as odometers for adding ±1 to an existing τ -NAF.

2. τ-Expansions

We consider here a curve defined by equation (1) over a finite field F2n and set µ = (−1)1−a.
Let τ denote the Frobenius automorphism of the field extension F2n/F2, i.e., τ(x) = x2. Since
the equation of the curve Ea is invariant under τ , this map permutes the F2n-rational points
of the curve. It is well-known (cf. Solinas [21, Section 4.1]) that for each point P ∈ Ea(F2n),
we have (τ 2 + 2)P = µτ(P ), which implies that we can identify τ with one of the complex
numbers satisfing

(3) τ 2 + 2 = µτ.

Now, for any z ∈ Z[τ ], a τ -expansion of z is an expression s = (. . . , s2, s1, s0) ∈ {−1, 0, 1}N0

such that only finitely many sj 6= 0 and valueτ (s) :=
∑

j≥0 sjτ
j = z. We will identify finite

and (left) infinite sequences in the natural way by padding with leading zeros. The Hamming
weight of s is the number of j ≥ 0 such that sj 6= 0. We note that using the characterization
of Kátai and Kovacs [10], it is easily seen that τ is the basis of a canonical number system,
i.e., every z ∈ Z[τ ] admits a unique τ -expansion with digits {0, 1}.

If m ∈ Z has a τ -expansion s and P ∈ Ea(F2n), mP can be computed as
∑

j≥0 sjτ
j(P ).

Obviously, the Hamming weight corresponds to the number (plus 1) of additions on the
curve Ea.

A τ -Nonadjacent-Form (τ -NAF) of z is a τ -expansion s of z satisfying sjsj+1 = 0 for
all j ≥ 0, i.e., an expansion that does not contain adjacent nonzero digits. Solinas [21,
Section 4.2, Theorem 1] showed that each z ∈ Z[τ ] has a unique τ -NAF.

In Figures 1 and 2, there is a transducer which computes the τ -NAF of an integer from
any other τ -expansion from right to left for µ = −1 and µ = 1, respectively. In various
places, we write 1̄ for −1 and ε for the empty word. We note that all transducers in this

paper read their input and write their output from right to left. For all transitions i
d|o−→ j in
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the transducers in Figures 1 and 2, we have d + valueτ (i) = τ(valueτ (j) + valueτ (.o)), where

valueτ (sk · · · s0.s−1 · · · s−`) =
∑k

j=−` sjτ
j. Furthermore, if i has `i and j has `j digits after

the “τ -point”, then o has length 1+`i−`j . This implies that the transducers indeed produce
a τ expansion of the value of its input. Obviously, the transducers produce a NAF.

0.1 .1̄

1̄

10 1̄0

1

1̄01̄

1̄0.1̄

1̄00.1

100.1̄

10.1

101

0|0

1|ε 1̄|ε
0|01

1|0
1̄

1̄|01̄

0|01̄

1|01

1̄|0
1

1|0

0|ε 1̄|0

0|0

1|ε

1̄|ε

0|0

1|ε

1̄|ε

1̄|00|ε1|0

1|0

1̄|0

0|ε

1̄|0
1

0|0
1̄
1|0

1

1̄|0
1̄

0|011|01̄

1|0
1

0|0̄1 1̄|01

1|0
1̄

0|0
1

1̄|0
1̄

1|0

1̄|0

0|ε

Figure 1. Transducer to compute the τ -NAF from any τ -expansion from
right to left, where µ = −1.

As in the case of the binary nonadjacent form introduced by Reitwiesner [18], the τ -NAF
minimizes the Hamming weight, which implies that the use of the τ -NAF of m ∈ Z for
computing mP minimizes the number of curve additions required.
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1̄0.1̄

100.1

101 1̄01̄

1̄00.1̄

10.1

0|0

1|ε1̄|ε
0|01

1|01̄

1̄|0̄1

0|01̄

1|01
1̄|01

0|0

1|ε

1̄|ε

1|0

0|ε
1̄|0

1̄|0

0|ε

1|0
0|0

1|ε

1̄|ε

1|0
1

0|0
1̄

1̄|0
1

1|0̄1

0|011̄|0̄1

1|0

1̄|0

0|ε

1|0

1̄|0

0|ε

1̄|01 0|0̄1 1|01

1̄|0
1̄

0|0
1

1|0
1̄

Figure 2. Transducer to compute the τ -NAF from any τ -expansion from
right to left, where µ = 1.

Theorem 1. Let z ∈ Z[τ ]. Then the Hamming weight of the τ -NAF of z is minimum
amongst all τ -expansions of z.

“Direct” proof. We claim that for any τ -expansion s with any (rational) integer digits, we
have c(s) ≥ c(NAF(s)), where c(s) :=

∑

j≥0 |sj| and NAF(s) denotes the τ -NAF of valueτ (s).
It is clear that the theorem is a consequence of this claim, since for expansions with digits
{0,±1}, the costs c equal the Hamming weight. We prove this claim by induction on c(s).
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Without loss of generality, we may assume that s0 > 0. We choose k ∈ Z such that
1 ≤ s0 − 2k ≤ 2. We have

valueτ (. . . , s3, s2, s1, s0) = valueτ (. . . , s3, s2 − k, s1 + µk, s0 − 2k) =: valueτ (s
′).

Of course, c(s′) = c(s) + |s2 − k| − |s2| + |s1 + µk| − |s1| + (s0 − 2k) − s0 ≤ c(s). Since
c(. . . , s′3, s

′
2, s

′
1) < c(s′) ≤ c(s), we may replace this expansion by its τ -NAF by induction

hypothesis without increasing its cost c. We conclude that valueτ (s) = valueτ (s
′′) for some

s
′′ such that s′′0 ∈ {1, 2}, (. . . , s′′3, s

′′
2, s

′′
1) is in τ -NAF and c(s′′) ≤ c(s).

We note that for arbitrary t3, t4, we have

valueτ (1, 0, 2) = valueτ (0, µ, 0),(4a)

valueτ (0,−µ, 2) = valueτ (−1, 0, 0),(4b)

valueτ (t3, 0, µ, 2) = valueτ (−µ + t3, 0, 0, 0)(4c)

(note that the cost c of the left hand side is always larger than that of the right hand side)
and

valueτ (t3, 0, 0, 2) = valueτ (−µ + t3, 0,−µ, 0),(5a)

valueτ (t4, 0,−1, 0, 2) = valueτ (1 + t4,−µ, 0, µ, 0),(5b)

valueτ (t3, 0, µ, 1) = valueτ (−µ + t3, 0, 0,−1),(5c)

valueτ (0,−µ, 1) = valueτ (−1, 0,−1).(5d)

In the last four equalities, the cost c of the left hand side is not smaller than that of the right
hand side and the last three or two digits of the right hand side are already in nonadjacent
form. We consider the equivalences (4) and (5) as replacement rules: “replace an occurrence
of the left hand side by the corresponding right hand side”. Applying these rules on s

′′ and
then using the induction hypothesis for the resulting expansion (in the case of the rules in
(4)) or on the left part of the resulting expansion (i.e., excluding the last two or three digits)
in the case of the rules in (5), our claim is proved. �

“Automatic” proof. The same result can also be proved using the argument of [7, Lemma 19]
and computations involving the transducers in Figures 1 and 2:

We consider the weighted digraph induced by the transducers in Figures 1 and 2, respec-
tively, with edge weights

w(i
d|o−→ j) := c(d) − c(o),

where c(s) :=
∑

j≥0 |sj| and c(ε) = 0. By using the Ford-Bellman algorithm (cf. Cook et

al. [4]), we conclude that there is no negative cost cycle, which implies that the shortest
path (in terms of the costs c) from 0 to 0 has weight 0, i.e., the τ -NAF is a τ -expansion of
minimal weight. �

As in [7, Remark 20], we conclude that any optimal τ -expansion corresponds to edges

satisfying π(i) + w(i
d|o−→ j) = π(j), where π(i) denotes the vertex potential of vertex i, i.e.,

the weight of the shortest path from the initial vertex 0 to vertex i. Therefore, the set of
optimal τ -expansions equals the set of expansions recognized by the automata in Figures 3
and 4 for µ = −1 and µ = 1, respectively.
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0
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1
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0
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1

1̄

0

1

1̄

0

1

0 0

1

0

1

0

1̄

0
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Figure 3. Automaton accepting all τ -expansions of minimal weight from
right to left for µ = −1.

Theorem 2. Let s be a τ -expansion of some z ∈ Z[τ ]. Then the Hamming weight of s is
minimum amongst all τ -expansions of z if and only if s is accepted by the automaton in
Figure 3 for µ = −1 or Figure 4 for µ = 1.

3. New Scalar Decomposition and Scalar Multiplication

Avanzi, Ciet, and Sica [2] proposed the following method for computing mP , where m ∈ Z

and P ∈ Ea(F2n) and the order of P is odd. They set Q := τ( 1
2
P ), which is easy to compute

(cf. [2]), and compute elements mP , mQ ∈ Z[τ ] such that mP = mP P + mQQ, choosing
τ -expansions of mP and mQ such that the sum of their Hamming weights is small. We will
refine their method giving an optimal such splitting, give a precise analysis involving second
order terms, the variance, and a central limit theorem.

Equation (3) implies that τ 3 + 2τ = µτ 2 = µ(µτ − 2) = τ − 2µ, hence

(6) 2 = −µ(1 + τ 2)τ.

In particular, this means that we can compute 2P as −µ
(

1 + τ 2
)

τP . This alone is not very
useful, since it replaces a point doubling with one addition and three Frobenius operations.
However, these relations become interesting if we can make repeated use of them.
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.1̄
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100.1 101 1̄01̄ 1̄00.1̄

10.1

0

1

1̄
0

1

1̄

0 1

1̄

0

1

1̄

0

1̄

0

1

0

1

1̄

0

1̄

0

1̄

0

0 0

1

0 1

Figure 4. Automaton accepting all τ -expansions of minimal weight from
right to left for µ = 1.

We consider so-called ((−µ)(1 + τ 2), 1)-double expansions ( s(1)

s(2)
), where s

(1) and s
(2) are

just any τ -expansions of arbitrary elements of Z[τ ]. We call two such expansions ( s
(1)

s(2)
)

and ( s′(1)

s′(2) ) equivalent and write ( s(1)

s(2)
) ≡ ( s′(1)

s′(2) ), if valueτ (s
(1))(−µ)(1 + τ 2) + valueτ (s

(2)) =

valueτ (s
′(1))(−µ)(1+ τ 2) + valueτ (s

′(2)). If we have a point P ∈ Ea(F2n) and set Q = τ( 1
2
P ),

the relation ( s(1)

s(2)
) ≡ ( s′(1)

s′(2) ) implies that valueτ (s
(1))P + valueτ (s

(2))Q = valueτ (s
′(1))P +

valueτ (s
′(2))Q.

The Hamming weight of a double expansion ( s
(1)

s(2)
) is defined to be the sum of the Hamming

weights of s
(1) and s

(2).

Let now s be the τ -NAF of an m ∈ Z. We will construct a double expansion ( s(1)

s(2)
) such

that ( s

0
) ≡ ( s

(1)

s(2)
) and such that the Hamming weight of ( s

(1)

s(2)
) is minimum.

Definition 1. A double expansion
(

s(1)

s(2)

)

is called a wide-double-NAF, if s
(i)
j = ±1 implies

that s
(k)
j+2 = s

(k)
j+1 = 0 for k = 1, 2 and s

(i′)
j = 0, where i′ = 3 − i and j ≥ 0.
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This means that in the language of regular expressions, a wide-double-NAF can be written
as
(

ε +
1

0
+

1̄

0
+

0

1
+

0

1̄
+

0

0

1

0
+

0

0

1̄

0
+

0

0

0

1
+

0

0

0

1̄

)(

0

0
+

0

0

0

0

1

0
+

0

0

0

0

1̄

0
+

0

0

0

0

0

1
+

0

0

0

0

0

1̄

)∗

.

We first prove a uniqueness result.

Lemma 1. If s and s
′ are equivalent wide-double-NAFs, then they are equal.

The proof relies on the following extension of Solinas’ [21] Lemma 28, which he used to
prove the uniqueness of the τ -NAF.

Lemma 2. Consider z =
∑

j≥0 sjτ
j ∈ Z[τ ]. Then

(1) z is divisible by τ in Z[τ ] if and only if s0 ≡ 0 (mod 2),
(2) z is divisible by τ 2 in Z[τ ] if and only if s0 + 2s1 ≡ 0 (mod 4),
(3) z is divisible by τ 3 in Z[τ ] if and only if s0 − 2µs1 − 4s2 ≡ 0 (mod 8).

Proof of Lemma 2. The first two assertions have been proved by Solinas [21]. To prove the
last assertion, we see that by definition, the element z is divisible by τ 3 if and only if there
are rational integers a0, a1 such that s0 + s1τ + s2τ

2 = τ 3(a0 + a1τ). Multiplying with the
complex conjugate τ̄ 3 of τ 3, we get s0τ̄

3 +2s1τ̄
2 +4s2τ̄ = 8(a0 +a1τ) using τ τ̄ = 2. Reducing

this equation using τ̄ = µ − τ and the minimal polynomial, we obtain

8(a0 + a1τ) = −3µ(s0 − 2µs1 − 4s2) − 8s1 − 8µs2 + τ(s0 − 2µs1 − 4s2).

Thus divisibility is equivalent to s0 − 2µs1 − 4s2 ≡ 0 (mod 8). �

Proof of Lemma 1. Let
(

s(1)

s(2)

)

≡
(

s′(1)

s′(2)

)

be two wide-double-NAFs. Without loss of generality,

we may assume that
( s

(1)
0

s
(2)
0

)

6=
( s′(1)

0

s′
(2)
0

)

and that s
(i)
0 = 1 for some i ∈ {1, 2}, which implies

s
(i′)
0 = 0 for i′ = 3 − i by definition of a wide-double-NAF.
By definition of equivalence, we have

(7)
∑

j≥0

(s
(1)
j − s′

(1)
j )(−µ)(1 + τ 2)τ j +

∑

j≥0

(s
(2)
j − s′

(2)
j )τ j = 0.

From the first assertion of Lemma 2 we conclude that

(s
(1)
0 − s′

(1)
0 )(−µ) + (s

(2)
0 − s′

(2)
0 ) ≡ 0 (mod 2).

Since s
(i)
0 = 1 and s

(i′)
0 = 0, we conclude that

(s′(1)
0

s′
(2)
0

)

6=
(

0
0

)

. This implies that s
(k)
j = s′

(k)
j = 0

for 1 ≤ j, k ≤ 2. We set c = −µ(s
(1)
0 − s′

(1)
0 ) and d = (s

(2)
0 − s′

(2)
0 ).

From (7) we conclude that c(1 + τ 2) + d is divisible by τ 3, which implies

(8) 0 ≡ (c + d) − 4c ≡ d − 3c (mod 8)

by Lemma 2. By assumption, we have (c, d) 6= (0, 0) and |c| + |d| = 2. This contradicts
(8). �

Now we can prove that a wide-double-NAF indeed exists and minimizes the Hamming
weight in its equivalence class.

Theorem 3. Let s be a ((−µ)(1 + τ 2), 1)-double expansion. Then there exists a unique
wide-double-NAF which is equivalent to s. Its Hamming weight is not larger than that of s.
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Proof. We allow arbitrary integer digits in s and prove the theorem by induction on

c(s) :=
∑

j≥0

(∣

∣s
(1)
j

∣

∣ +
∣

∣s
(2)
j

∣

∣

)

.

By (the “direct” proof of) Theorem 1, we may replace (s
(i)
j )j≥0 by its τ -NAF (s′

(i)
j )j≥0 for

i ∈ {1, 2} without increasing the costs c. Of course, we have s ≡ s
′.

We easily check that for all t
(i)
j , we have
(

t
(1)
2

t
(2)
2

0

0

1

µ

)

≡
(

t
(1)
2

(µ̄ + t
(2)
2 )

0

0

0

0

)

,(9a)

(

0

0

1

µ̄

)

≡
(

0

1̄

0

0

)

,(9b)

(

0

1

t
(1)
1

0

0

1

)

≡
(

0

0

t
(1)
1

0

µ̄

0

)

,(9c)

(

0

t
(2)
2

1̄

0

0

1

)

≡
(

0

t
(2)
2

0

0

0

1̄

)

,(9d)

(

t
(1)
2

0

0

1

1

0

)

≡
(

t
(1)
2

0

0

0

0

µ

)

,(9e)

(

0

µ

0

0

1

0

)

≡
(

0

0

0

0

0

µ̄

)

,(9f)

(

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

t
(1)
3

0

0

1̄

1

0

0

1

)

≡
(

t
(1)
5

(µ + t
(2)
5 )

t
(1)
4

t
(2)
4

t
(1)
3

0

0

0

0

0

0

1̄

)

.(9g)

We note that in all the above equivalences, the costs c decrease from the left hand side to
the right hand side. This means that if we find one of the left hand sides (or its negatives,
of course) as subblocks in our double expansion s

′, we can replace this subblock by the
corresponding right hand side and use the induction hypothesis to convert the resulting
expansion to a wide-double-NAF not increasing the costs.

So we may assume that the left hand sides of (9) do not occur (at least in the rightmost
digits). Furthermore, we have

(

t
(1)
4

t
(2)
4

t
(1)
3

t
(2)
3

0

0

0

1̄

1

0

)

≡
(

t
(1)
4

(µ + t
(2)
4 )

t
(1)
3

t
(2)
3

0

0

0

0

1̄

0

)

,(10a)

(

t
(1)
6

t
(2)
6

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

1̄

1

0

)

≡
(

t
(1)
6

(µ̄ + t
(2)
6 )

t
(1)
5

t
(2)
5

t
(1)
4

t
(2)
4

0

(1̄ + t
(2)
3 )

0

0

0

0

0

µ

)

,(10b)

(

t
(1)
3

0

0

µ̄

0

0

1

0

)

≡
(

(µ̄ + t
(1)
3 )

0

0

0

0

0

0

µ̄

)

,(10c)

(

t
(1)
4

t
(2)
4

0

t
(2)
3

1̄

0

0

0

1

0

)

≡
(

t
(1)
4

(µ + t
(2)
4 )

0

t
(2)
3

0

0

0

0

0

µ̄

)

,(10d)
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(

0

t
(2)
3

1

0

0

0

1

0

)

≡
(

0

(1̄ + t
(2)
3 )

0

0

0

0

0

µ̄

)

,(10e)

(

t
(1)
3

0

0

1̄

0

0

0

1

)

≡
(

(1̄ + t
(1)
3 )

0

0

0

0

0

µ̄

0

)

,(10f)

(

0

t
(2)
3

µ

0

0

0

0

1

)

≡
(

0

(µ̄ + t
(2)
3 )

0

0

0

0

µ̄

0

)

,(10g)

(

t
(1)
4

t
(2)
4

0

t
(2)
3

µ̄

0

0

0

0

1

)

≡
(

t
(1)
4

(1 + t
(2)
4 )

0

t
(2)
3

0

0

0

0

µ̄

0

)

,(10h)

(

t
(1)
3

t
(2)
3

0

0

1

0

0

1

)

≡
(

t
(1)
3

(µ̄ + t
(2)
3 )

0

0

0

0

µ

0

)

.(10i)

We observe that in each of the above equivalences, the costs do not increase from left to
right and that the last three digits of the right hand side is always a block which is allowed
in a wide-double-NAF. This means that we can apply the induction hypothesis to the right
hand sides with the last three digits removed. Finally, we note that for every s

′ found above,
exactly one of the listed equivalences (or its negative) can be applied. �

It is straightforward to write down explicitly a computer program that performs the re-
coding simply by table look-ups. Of course, the rules (9) and (10) can also be implemented
by a transducer. This transducer has 153 states, hence it is not shown in this paper. The
transducer can however be used to give an “automatic” optimality proof following the lines
of the “automatic” proof of Theorem 1. As a consequence, we also get a characterization of
optimal expansions. In this case, the automaton recognizing the optimal expansions can be
simplified to 27 states and is shown in Figures 5 and 6 for µ = −1 and µ = 1, respectively.
Note that the wide-double-NAF is accepted by the “inner square” around state 1. The
figures show that minimal expansions can be much more complicated. Automata accepting
all minimal expansions are the starting point for a detailed study of the number of minimal
expansions, cf. [5, 6].

In our situation, we are given the τ -NAF s of an integer m ∈ Z and we are looking for the
wide-double-NAF which is equivalent to ( s

0
). In this case, the above mentioned transducer

with 153 states can be considerably reduced—only the inputs 0
0
, 1̄

0
, 1

0
can occur, furthermore,

the NAF-condition on the input can be imposed: The resulting transducer only has 9 states
and is shown in Figures 7 and 8 for µ = −1 and µ = 1, respectively.

The labels of the states correspond to carries (before the “τ -point”) and stored input where
no decision could be made up to now (after the “τ -point”). More precisely, for a transition

s.s′
d|o−−→ t.t′

we always have
(

s +
(

d

0

)

)

s
′ ≡ tt

′
o

and the sum of the lengths of d and s
′ equals the sum of the lengths of t

′ and o. The output
is always a wide-double-NAF.
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14

15

16

17
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0
0

1̄

0

01̄

01

1

0

00

1̄0

00

0

1

1
0

0

0

01

1

0

0

0

0

1

1̄

0

0

0

1

0

0

1̄

0

0

1̄

0

01̄

00

1̄
0

10

0

1̄

00

0

0

1

0

0

0

0
0

1̄
0

1
0

0

1

0
0

1
0

0
0

1̄
0

1
0

0

1̄

0

0

1

0

0

0

00

00

00

00

0

0

0
0

1̄
0

00

00

0

0

0

0

1̄

0

0

0

1̄

0

Figure 5. Automaton accepting all double expansions of minimal Hamming
weight for µ = −1

Not every wide-double-NAF can be reached by applying the transducers in Figures 7
and 8. If we consider the output of these transducers as the input of an nondeterministic
automaton, convert it to a deterministic automaton and simplify it, we obtain the automaton
in Figure 9 (for both values of µ). This means that a wide-double-NAF s is equivalent to a
(

t

0

)

for some simple τ -NAF t if and only if the number of nonzero entries in the second row
is even.

We can also ask which elements can be represented by a double expansion, when we

define the value of a double expansion
(

s(1)

s(t)

)

to be valueτ (s
(1)) + 1

(−µ)(1+τ2)
valueτ (s

(2)), i.e.,

the value in the “P -world.” By (6), we see that 1
(−µ)(1+τ2)

= τ/2. So double expansions

represent the elements of Z[τ ] + τ
2
Z[τ ]. The set Z[τ ] equals the set Z + τZ, so that we have

τ
2
Z[τ ] = τ

2
Z + τ2

2
Z = τ

2
Z + (µ

2
τ − 1)Z = Z + τ

2
Z. We conclude that double expansions

correspond exactly to the set Z + τ
2
Z.

We now want to analyze the Hamming weight of the output of the transducers in Figure 7
and 8. As input, we consider finite τ -NAFs (s`−1, . . . , s0) and call ` the length of the τ -NAF

(without requiring s`−1 = 0). We set a
(µ)
k,` to be the number of τ -NAFs of length ` whose
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0
0

1̄

0

01̄

01

1

0

0

0

1̄

0

0

1

1̄
0

00

0

1

10

0 0

1̄0

0

0

0

1̄

0

0

0

1

10

0 0

00

1̄0

1
0

0

1̄

0

0

0

1̄

1

0

0

0

0

0

0

0

0

0

1

0

00

00

0
0

1̄
0

1
0

0

1

0 0

1
0

0
0

1̄
0

1
0

0

1̄

0
0

1

0

0
0

1̄

0

00

00

0

0

1̄

0

0

0

0 0

1̄
0

0

0

0

0

Figure 6. Automaton accepting all double expansions of minimal Hamming
weight for µ = 1

output after running the transducers in Figure 7 or 8 has Hamming weight k. We consider
the generating function G(µ)(U, Z) defined as

G(µ)(U, Z) :=
∑

k≥0
`≥0

a
(µ)
k,` U

kZ`.

For computing this generating function, we consider the labelled adjacency matrix

B(µ)(U, Z1, Z0) :=
(

b
(µ)
ij (U, Z1, Z0)

)

1≤i≤9
1≤j≤9

,

where

b
(µ)
ij (U, Z1, Z0) =

{

UHamming weight of sZ1, if d ∈ {01, 01̄},
UHamming weight of sZ0, if d = 0,

13
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0|ε 01| 0
0

0
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0

1
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0

0

0

1

0

0|ε 0| 0
0 0
0 0
1

01̄|
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|0 0

0
0

0
0
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0
0

0
0

0
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01̄| 0
0 0
0 0
0 1̄
0

0
1|

00

00

1̄0
Figure 7. Transducer computing the wide-double-NAF equivalent to the
(single) input NAF for µ = −1

if there is a transition i
d|s−→ j. The states of the transducer are numbered in some arbitrary

way as follows:
1 2 3 4 5 6 7 8 9
0
0

.0
0

1̄
0

.0
0

1
0

.0
1

0
1

0
1̄

.0
1̄

.0
0

0
1

.0
0

0
1̄

For µ = −1, we have

B(µ)(U, Z1, Z0) =



























Z0 Z1 Z1 0 0 0 0 0 0
UZ0 0 0 UZ1 UZ1 0 0 0 0
UZ0 0 0 0 0 UZ1 UZ1 0 0
UZ1 0 0 0 UZ1 0 0 Z0 0

0 0 0 Z0 0 Z1 Z1 0 0
0 0 0 Z1 Z1 0 Z0 0 0

UZ1 0 0 0 0 UZ1 0 0 Z0

UZ0 0 0 UZ1 UZ1 0 0 0 0
UZ0 0 0 0 0 UZ1 UZ1 0 0



























.

In writing down the generating function, we have to care about the fact that our transducer
always reads nonzero digits together with its subsequent zero. Thus we have to label such a
transition with Z2, whereas a transition with input label 0 has to be multiplied by Z. There
is one exception to this rule: At the end of our input NAF of given length `, we may have
to read a single 1 or −1 without its associated 0, more precisely, we may of course read the
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Figure 8. Transducer computing the wide-double-NAF equivalent to the
(single) input NAF for µ = 1

1 2

00

00

1̄0
,

00
,

00

00
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0

0

0

0

0

1̄
,

0

0

0

0

0

1

0

0

0

0

0

1̄
,

0

0

0

0

0

1

00

00

1̄0
,

00
,

00

00

10

Figure 9. Output of the transducers in Figures 7 and 8 (independent of µ)

associated 0, but we are not allowed to count it in the input length. In the language of
regular expressions, we can write a NAF (from right-to-left) as

(1 + 1̄ + ε)
(

0 + (01) + (01̄)
)∗

.

Therefore, the generating function is (we have to reverse the direction by definition of the
matrix product)

G(µ)(U, Z) = (1, 0, . . . , 0)
(

I − B(µ)(U, Z2, Z)
)

B(U, Z, 1)v,

where

v = (1, U, U, U, U, U, U, U, U)T

takes care of the output which has to be written after the last input digit. We note that by
chance, v is independent of µ.

15



Using a computer algebra program, we get

G(µ)(U, Z) =
1 + 2UZ − Z2 + 2UZ2 − 4UZ3 + 4U2Z3 − 4UZ4 − 2U2Z5 + 2U3Z5

(−1 + Z)(1 + Z)(−1 + Z + 4UZ3)
,

again independently of µ. We will therefore drop the index µ for the remainder of the
analysis.

We now consider the random variable H` which we define to be the Hamming weight of the
output of the transducers in Figures 7 and 8 (i.e., the number of elliptic curve summands)
reading a random τ -NAF of length `, where we consider equidistribution on the set of all
τ -NAFs of length `.

We note that the number of τ -NAFs equals the number of binary NAFs and can be
calculated as

[

Z`
]

G(1, Z) =
[

Z`
] 1 + 2Z

1 − (Z + 2Z2)
=

4

3
2` − 1

3
(−1)` =

4

3
2`(1 + O(2−`)),

cf. for instance [8]. Therefore, each NAF of length ` occurs with probability 3
4
2−`(1+O(2−`)).

Thus the expectation E(H`) equals

E(H`) =
1

4
3
2`(1 + O(2−`))

[

Z`
]

(

∂G(U, Z)

∂U

)

U=1

,

which can be calculated to be

E(H`) =
`

4
+

53

96
+ O(2−`/2) ≈ 0.25` + 0.552083 + O(2−`/2).

This should be compared with the average Hamming weight of NAF’s of length `, being

`

3
+

2

9
+ O(2−`).

For computing the variance V(H`), we calculate

E(H`(H` − 1)) =
1

4
3
2`(1 + O(2−`))

[

Z`
]

(

∂2G(U, Z)

∂U2

)

U=1

=
1

16
`2 +

11

192
` − 23

288
+ O(2−`/2).

We conclude that

V(H`) = E(H`(H` − 1)) + E(H`) − (E(H`))
2

=
`

32
+

1543

9216
+ O(`2−`/2) ≈ 0.03125` + 0.167426 + O(`2−`/2).

From Hwang’s [9] “quasi-power theorem,” we conclude that we have the following central
limit theorem:

lim
`→∞

P

(

H` ≤
`

4
+ h

1

8

√
2`

)

=
1√
2π

∫ h

0

e−t2/2 dt.

We summarize our findings in the following theorem.

Theorem 4. Let P be a point on Ea(F2n), m ∈ Z and s a τ -NAF of m with ` digits. Then

the transducers in Figures 7 and 8 compute an expansion ( s
(1)

s(2)
) such that

mP = valueτ (s
(1))P + valueτ (s

(2))τ(1
2
P ).
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The right hand side can be written as a sum of H` summands. The random variable H`

(where all τ -NAFs of length ` are considered to be equally likely) satisfies

E(H`) =
`

4
+

53

96
+ O(2−`/2) ≈ 0.25` + 0.552083 + O(2−`/2),

V(H`) =
`

32
+

1543

9216
+ O(`2−`/2) ≈ 0.03125` + 0.167426 + O(`2−`/2),

lim
`→∞

P

(

H` ≤
`

4
+ h

1

8

√
2`

)

=
1√
2π

∫ h

0

e−t2/2 dt.

4. Refined Analysis

Instead of considering the Hamming weight of the output of the algorithm, we produce
here a refined analysis, by counting the “digits” in the output. The following four digits

will be counted: 1
0
, 1̄

0
, 0

1
, 0

1̄
(in that order). The following two tables give, for µ = −1 resp.

µ = 1, the average and variances of these counts (the second line is always the floating point
representation). This is easy to achieve from the transducer, by appropriately labelling the
edges with auxiliary variables (instead of just one variable U as before).

µ = −1
Average Variance

1
0

`
16

+ 1
12

+ O(2−`/2) 25`
512

+ 1193
18432

+ O(`2−`/2)

0.0625` + 0.0833333 + O(2−`/2) 0.0488281` + 0.06472439 + O(`2−`/2)

1̄
0

`
16

+ 1
12

+ O(2−`/2) 25`
512

+ 1193
18432

+ O(`2−`/2)

0.0625` + 0.0833333 + O(2−`/2) 0.0488281` + 0.06472439 + O(`2−`/2)

0
1

`
16

+ 37
192

+ O(2−`/2) 25`
512

+ 2413
36864

+ O(`2−`/2)

0.0625` + 0.192708 + O(2−`/2) 0.0488281` + 0.06545681 + O(`2−`/2)

0
1̄

`
16

+ 37
192

+ O(2−`/2) 25`
512

+ 2413
36864

+ O(`2−`/2)

0.0625` + 0.192708 + O(2−`/2) 0.0488281` + 0.06545681 + O(`2−`/2)

µ = 1
Average Variance

1
0

`
16

+ 1
12

+ O(2−`/2) 25`
512

+ 1205
18432

+ O(`2−`/2)

0.0625` + 0.0833333 + O(2−`/2) 0.0488281` + 0.0653754 + O(`2−`/2)

1̄
0

`
16

+ 1
12

+ O(2−`/2) 25`
512

+ 1205
18432

+ O(`2−`/2)

0.0625` + 0.0833333 + O(2−`/2) 0.0488281` + 0.0653754 + O(`2−`/2)

0
1

`
16

+ 37
192

+ O(2−`/2) 25`
512

+ 5149
36864

+ O(`2−`/2)

0.0625` + 0.192708 + O(2−`/2) 0.0488281` + 0.139676 + O(`2−`/2)

0
1̄

`
16

+ 37
192

+ O(2−`/2) 25`
512

+ 5149
36864

+ O(`2−`/2)

0.0625` + 0.192708 + O(2−`/2) 0.0488281` + 0.139676 + O(`2−`/2)
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Appendix. Illustrations

In this appendix, we illustrate a few properties of the τ -NAF which can also be used for a
even more refined analysis. First, we show approximations for the characteristic sets. These
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sets with fractal boundary are crucial in Delange’s approach for computing a precise asymp-
totic formula refining the results on full block length. We use the following representations
of (double-)digits by colors:

0
1̄

“Magenta”

−1, 1̄
0

“Blue”

1, 1
0

“Red”

0
1

“Green”

Figure 10 describes all numbers a + bτ , for 0 ≤ a, b < 200 and µ = −1, scaled into a
square, and the digit with index 10 (the rightmost digit has index 0).

Figure 10. τ -NAF, µ = −1, k = 10, M = 200

Figure 11 describes all numbers a + bτ , for 0 ≤ a, b < 200 and µ = 1, scaled into a square,
and the digit with index 11.

Figure 12 describes all numbers a + bτ , for 0 ≤ a, b < 200 and µ = −1, scaled into a
square, and the double digit of the wide-double-NAF with index 10.

Figure 13 describes all numbers a + bτ , for 0 ≤ a, b < 200 and µ = 1, scaled into a square,
and the double digit of the wide-double-NAF with index 11.
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Figure 11. NAF, µ = +1, k = 11, M = 200

Finally, we show the transducer realizing the addition and the subtraction of 1. This
transducer can be seen as a description of the expansion without needing any auxiliary
expansion. We give these transducers for the τ -NAF’s with µ = ±1 in the Figures 14 and
15. The meaning of the states is as in Figures 1 and 2. Note that there are two states
labelled 1 (and 1̄), since the transducer checks that the input is indeed a nonadjacent form.
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Figure 12. Wide-Double-NAF, µ = −1, k = 10, M = 200

Figure 13. Wide-Double-NAF, µ = +1, k = 11, M = 200
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Figure 14. Addition of ±1 for NAFs with µ = −1. Use initial state 1 for
addition of 1 and initial state 1̄ for addition of −1.
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Figure 15. Addition of ±1 for NAFs with µ = +1. Use initial state 1 for
addition of 1 and initial state 1̄ for addition of −1.
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