SUMS OF CHOI, ZÖRNIG, AND RATHIE - AN ELEMENTARY APPROACH

HELMUT PRODINGER

Abstract

The sums in the title and any number of similar ones are obtained in a completely elementary and simple way.

The sum

$$
\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k} \frac{1}{2^{k}(n+k+1)}
$$

has gained a fair amount of attraction, see [1] and the references given therein.
We study here the slightly more general sum

$$
S(n, m):=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{2^{k}(m+k)}
$$

by completely elementary tools. ($n \in \mathbb{N}_{0}, m \in \mathbb{N}$.)
There is the alternative formula

$$
S(n, m)=\frac{n!(m-1)!}{2^{n}(n+m)!} \sum_{k=0}^{n}\binom{m+n}{k},
$$

which can be proved using Pfaff's reflection law, see [2]. But it can also be proved by an induction on n, which is a simple exercise left to the reader. It is amusing that this sum (and its alternative) appear also in [3].

This alternative formula is particularly useful if m is close to zero or close to n, since then the sum can be evaluated in closed form. To wit, let $m=n+d$, with $d \in \mathbb{N}_{0}$, then

$$
S(n, n+d)=\frac{n!(n+d-1)!}{2^{n}(2 n+d)!}\left[2^{2 n+d-1}-\frac{1}{2} \sum_{k=n+1}^{n+d-1}\binom{2 n+d}{k}\right] .
$$

Note that for $d=0$, the expression in the bracket must be interpreted as $2^{2 n-1}+\frac{1}{2}\binom{2 n}{n}$, which is consistent (see [2]).

So we evaluated the sum mentioned in the beginning:

$$
S(n-1, n+1)=\frac{(n-1)!n!}{2^{n-1}(2 n)!}\left[2^{2 n-1}-\frac{1}{2}\binom{2 n}{n}\right]=\frac{(n-1)!n!2^{n}}{(2 n)!}-\frac{1}{n 2^{n}} .
$$

The paper [1] contains two main results ((1.11) and (1.12) loc. cit.), which go like this:

$$
\begin{aligned}
& \begin{aligned}
& \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{k}{2^{k}(n+k)(n+k+1)} \\
&= \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \frac{1}{2^{k}}\left[\frac{n+1}{n+1+k}-\frac{n}{n+k}\right] \\
&=(n+1) S(n, n+1)-n S(n, n) \\
&=(n+1) \frac{n!n!}{(2 n+1)!} 2^{n}-n\left[\frac{n!(n-1)!}{(2 n)!} 2^{n-1}+\frac{1}{n 2^{n+1}}\right] \\
&= \frac{n!n!}{(2 n+1)!} 2^{n-1}-\frac{1}{2^{n+1}} ; \\
& \sum_{k=0}^{n-2}(-1)^{k}\binom{n-2}{k} \frac{k}{2^{k}(n+k)(n+k+1)} \\
&= \sum_{k=0}^{n-2}(-1)^{k}\binom{n-2}{k} \frac{1}{2^{k}}\left[\frac{n+1}{n+1+k}-\frac{n}{n+k}\right] \\
&=(n+1) S(n-2, n+1)-n S(n-2, n) \\
&=(n+1) \frac{(n-2)!n!}{2^{n-2}(2 n-1)!}\left[2^{2 n-2}-\frac{1}{2} \sum_{k=n-1}^{n}\binom{2 n-1}{k}\right] \\
&-n \frac{(n-2)!(n-1)!}{2^{n-2}(2 n-2)!}\left[2^{2 n-3}-\frac{1}{2} \sum_{k=n-1}^{n-1}\binom{2 n-2}{k}\right] \\
&= \frac{3 n!n!2^{n}}{(n-1)(2 n)!}-\frac{n+2}{(n-1) 2^{n-1} .}
\end{aligned}
\end{aligned}
$$

It is easy to generate any number of similar examples - preferably with a computer!

References

[1] J. Choi, P. Zörnig, and A.K. Rathie. Sums of certain classes of series. Comm. Korean Math. Soc., 14:641-647, 1999.
[2] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics (Second Edition). Addison Wesley, 1994.
[3] A. Knopfmacher and H. Prodinger. A simple card guessing game revisited. Electron. J. Combin., 8(2):Research Paper 13, 9 pp. (electronic), 2001. In honor of Aviezri Fraenkel on the occasion of his 70th birthday.

Helmut Prodinger, Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

