Subblock Occurrences in Positional Number Systems and Gray code Representation

Peter Kirschenhofer
Helmut Prodinger
Institut fur Algebra und Diskrete Mathematik
Technische Universität Wien
Gußhausstrape 27-29, A-1040 Wien
Austria

ABSTRACT

This paper deals with the average number of subblock occurrences in the following representations of integers : the $\langle\mathrm{q}, \mathrm{d}\rangle$-ary representation (with digits d , $d+1, \ldots, d+q-1)$ and the Gray code representation.

1. INTRODUCTION

In a recent paper [3] P. Kirschenhofer has proved the following result on the number $B_{q}(w, n)$ of subblocks w in the q-ary representation of $n \in \mathbf{N}_{0}$, where overlapping is allowed and w is a string of digits of length s neither starting nor ending with 0 :
(1) $\frac{1}{m} \sum_{n=0}^{m-1} B_{q}(w, m)=\frac{\log _{q} m-(s-1)}{q^{s}}+H_{w}\left(\log _{q} m\right)+\frac{E_{w}(m)}{m}$,
where H_{w} is continuous, periodic with period 1 and $H_{w}(0)=0$ and E_{w} is bounded.

For the special case $q=2$ and $w=1^{s}$ this result has already appeared in [5].

The method to estabiish this result is an approach to appiy a method which has been introduced by Delange in [1] where he has analyzed the sum of digits function.

Journal of Information \& Optimization Sciences
Vol. 5 (1984), No. 1, pp. 29-42
(C) Analytic Publishing Co.
(Theorem 1) - the Fourier cxpansion of a pariodic function appearing in this average constitutes the next resuit (Thecrem: 2). At the end of the section we use the previous results to estabish the desired arerage

$$
\frac{1}{m} \sum_{n=0}^{m-1} B_{q, \alpha}(w, n)
$$

(Lemma 2, resp. Theorem 3).
Lemma 1. Let w be a sequence of s digits not sar:ing with O and let $A_{q}, d(w, r)$ denote the number of subbluiks w in the $\langle q, d\rangle$-representa. tion of the real $r \geqslant 0$, where we count all hose occurences that are either entirely to the left or straddle the radix point. Then

$$
\begin{equation*}
A_{q, d}(w, r)=\sum_{k \geqslant 1}\left(\left\lfloor\frac{r}{q^{i}}+\beta+\frac{1}{q^{s}}\right]-\left[\frac{r}{q^{i}}+\beta\right] j\right. \tag{2}
\end{equation*}
$$

where
(3) $\quad \beta=1-(o . w)_{q, d}-\frac{1}{q^{j}} \cdot \frac{d}{q-1}-\frac{1}{q^{s}}$.

Proof. The k-term in the sum cif the Lemma can oniy take the values 0 and 1 . In the following we will show that it takes the value 1 iff w occurs as a subblock in the $\langle q, d\rangle$-representation of r (starting with the k-th digit left to the radix point).

We define the number s by the equation

$$
q^{k-3} \cdot \varepsilon=r-q^{k}(o . W)_{q, i}-q^{i}\left\lfloor\frac{r}{q^{k}}-\frac{d}{q-1}\right\rfloor
$$

(The last term corresponds to the digits left of the k-th position.)
Then it follows that

$$
\frac{d \cdot q^{s}}{q-1}-(0 \cdot w)_{q \cdot d} \cdot q^{s} \leqslant \in<\frac{d q^{s}}{q-1}-(0 \cdot w)_{q, d} \cdot q^{s}+q^{s}
$$

and it can be readily checked that a subblock w starting at k-th position corresponds to values ε in the interval

$$
\frac{d}{q-1} \leqslant \epsilon<\frac{d}{q-1}+1
$$

Indeed, the k-term of the sum is 1 in this case. To make the discussion of the remaining cases for ϵ independent from the special form of w, we observe that

$$
\frac{d}{q-1}\left(1-\frac{1}{q^{s}}\right) \leqslant(0 . w)_{q, d} \leqslant-\frac{d}{q-1}\left(1-\frac{1}{q^{s}}\right)+1-\frac{1}{q^{s}} .
$$

The remaining intervals for ϵ are covered by

$$
\frac{d}{q-1}-q^{3}+1 \leqslant \epsilon<\frac{d}{q-1}
$$

and

$$
\frac{d}{q-1}+1 \leqslant \epsilon<\frac{d}{q-1}+q^{3}
$$

In both cases the k-term of the sum is $0 . \quad \square$
For later use we remark that the proof of Lemma 1 contains also the following corollary.

Corollary 1. The number $B_{q, d}(w, r)$ of subblocks w in the situation of Lemma 1 that are entirely to the left of the radix point is given by
(4) $\quad B_{q, d}(w, r)=\sum_{k \geqslant s}\left(\left\lfloor\frac{r}{q^{k}}+\beta+\frac{1}{q^{s}}\right\rfloor-\left\lfloor\frac{r}{q^{k}}+\beta\right\rfloor\right)$.

Following the plan indicated at the beginning of this section we turn now to the investigation of the average of $B_{q, a}(w, i)$:

In a first step we compute the average $A_{*}(w, r)$.
Theorem 1. With w and $A_{z, d}(w, r)$ as in Lemma 1 we have
(5) $\frac{1}{m} \int_{0}^{m} A_{q, d}(w, r) d r=\frac{\log _{q} m}{q^{3}}+H_{w}\left(\log _{q} m\right)$
where $H_{t o}$ is a continuous, periodic function wih period 1 and $H_{w}(0)=0$.
Proof. With the explicit formula for $A_{q, d}(w, r)$ of Lemma 1 we get

$$
\int_{0}^{m} A q, d(w, r) d r=\int_{0}^{m} \sum_{k>1}\left(\left\lfloor\frac{r}{q^{k}}+\beta+\frac{1}{q^{2}}\right\rfloor-\left\lfloor\frac{r}{q^{k}}+\beta\right\rfloor\right) d r
$$

We observe that nonzero contributions to the sum may originate only from values of $k \leqslant l+1$ where

$$
l=\left\lfloor\log _{a} m-\log _{a}\left(1+\frac{d}{q-1}\right)\right\rfloor
$$

so that

$$
\begin{equation*}
\int_{0}^{m} A_{q, d}(w, r) d r=\sum_{k=1}^{l+1} \int_{0}^{m}\left(\left\lfloor\frac{r}{q^{k}}+\beta+\frac{1}{q^{s}}\right\rfloor-\left\lfloor\frac{r}{q^{k}}+\beta\right\rfloor\right) d r \tag{6}
\end{equation*}
$$

It is convenient to introduce the function
(7) $g_{\beta, s}(x)=\int_{0}^{x}\left(\left\lfloor u+\beta+\frac{1}{q^{s}}\right\rfloor-\lfloor u+\beta\rfloor-\frac{1}{q^{s}}\right) d u$.

Then $g_{\beta, s}$ is continuous, periodic with period $1, g_{\beta, s}(0)=0$, and a simple substitution (compare with [3]) shows that the sum from above equals

$$
\frac{1}{q^{s}} m(l+1)+\sum_{k \geqslant 0} q^{l+1-k} g_{\beta, s}\left(m q^{k-l-1}\right)
$$

With $\{x\}=x-\lfloor x\rfloor$ and $\gamma=\log _{a}\left(1+\frac{d}{q-1}\right)$ we can rewrite (6) as

$$
\begin{aligned}
& \frac{1}{q^{3}} \cdot m \cdot \log _{q} m+\frac{m}{q^{3}}\left(1-\gamma-\left\{-\gamma+\log _{q} m\right\}\right) \\
& \quad+m q^{1-\gamma-\left\{-\gamma+\log _{q} m\right\}} \cdot h_{\beta, s}\left(q^{-1+\gamma+\left\{-\gamma+\log _{q} m\right\}}\right)
\end{aligned}
$$

where
(8) $\quad h_{\beta, s}(x)=\sum_{k \geqslant 0} q^{-\dot{k}} \cdot g_{\beta, s}\left(x q^{k}\right)$.

Putting
(9)

$$
\begin{aligned}
& H_{w}(x)=\frac{1-Y-\{-\gamma+x\}}{q^{s}}+q^{1-\gamma-\{-\gamma+x\}} \\
& h_{\beta, s}(q\{-\gamma+x\}-1+\eta
\end{aligned}
$$

the function $H_{w}(x)$ is continuous, periodic with pericd 1 and $H_{w}(0)=0$, and Theorem 1 is established.

It is instructive to compute the Fourier coefficients of the periodic function appearing in Theorem 1.

THEOREM 2. The periudic function $H_{u}(x)$ of Theorem 1 has the following Fourier expansion :

$$
\begin{equation*}
H_{w x}(x)=\sum_{k \in \mathbf{Z}} h_{k \cdot} e^{2 \pi i k x} \tag{10}
\end{equation*}
$$

with

$$
\begin{aligned}
h_{1} & =\log _{q} \frac{\Gamma\left(1-\left\{\beta+q^{s}\right)\right.}{\Gamma(1-\{\beta\})}-\frac{1}{q^{s}}\left(\frac{1}{2}+\frac{1}{\log q}\right), \\
\text { (11) } \quad h_{k} & =\frac{\zeta\left(\chi_{k}, 1-\left\{3+q^{-s}\right)\right)-\zeta\left(\chi_{k}, 1-\{\beta\}\right)}{\log q \cdot \chi_{k} \cdot\left(1+\chi_{k}\right)}, k \neq 0
\end{aligned}
$$

Where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of $x, \zeta,(z, a)$ the ζ-function of Hurwitz, $\chi_{k}=2 k \pi i / \log q$ and β is defined as in Lemma 1.

Proof. Let $\varphi=\log _{q}\left(1+\frac{d}{q-1}\right)$ and assume $\gamma \leqslant x<\varphi+1$. Then

$$
H_{w}(x)=\frac{1-x}{q^{s}}+q^{1-z} \cdot h_{\beta, s}\left(q^{z-1}\right)
$$

and

$$
h_{k}=a_{k}+b_{k}
$$

with

$$
\begin{aligned}
& a_{k}=\int_{\gamma}^{\gamma+1} q^{1-x} h_{\beta, s}\left(q^{3-1}\right) e^{-2 k \pi i x} d x \\
& b_{k}=\frac{1}{q^{s}} \int_{\gamma}^{Y+1}(1-x) e^{-2 k \pi i x} d x
\end{aligned}
$$

It is readily verified that

$$
\begin{aligned}
& b_{0}=\frac{1}{q^{s}}\left(\frac{1}{2}-r\right), \\
& b_{k}=\frac{1}{q^{s}} \cdot \frac{e^{-2 k \pi i \gamma}}{2 k \pi i}, k \neq 0 .
\end{aligned}
$$

Further

$$
a_{k}=\sum_{r=0}^{\infty} \int_{\gamma}^{\gamma+1} q^{1-x-r} \cdot g_{\beta, s}\left(q^{s i+r}\right) e^{-2 k \pi i x} d x
$$

Using the substitution $x=1-r+\log _{Q} u$ we get

$$
a_{k}=\frac{1}{\log q} \cdot \int_{q^{r}-1}^{\infty} \frac{g_{\beta_{, s}(u)}}{u^{2+x_{k}}} d u
$$

With the abbreviation
(12) $\Phi_{\beta, s}(z)=\int_{q^{\gamma-1}}^{\infty} \frac{g_{\beta, s}(u)}{u^{z+1}} d u$
we may write

$$
a_{k}=\frac{1}{\log q} \cdot \Phi_{\beta, s}\left(1+x_{k}\right)
$$

In the following, we compute $\Phi_{\beta, s}(z)$ for $z \neq 1$:

$$
\begin{aligned}
\Phi_{\beta, s}(z) & =\int_{q}^{\infty} \frac{d u}{u^{2+1}} \int_{0}^{u}\left(\left\lfloor t+\beta+\frac{1}{q^{3}}\right\rfloor-\lfloor t+\beta\rfloor-\frac{1}{q^{s}}\right) d t \\
& =-\frac{1}{z q(\gamma-1)} \overline{z+s+1}\left(1+\frac{d}{q-1}\right)+I_{1}-I_{2}-I_{3}
\end{aligned}
$$

with

$$
\begin{aligned}
& I_{1}=\frac{1}{z} \int_{q^{\gamma-1}}^{\infty} \frac{d u}{u^{2}}\left[u+\beta+\frac{1}{q^{3}}\right\rfloor d u, \\
& I_{2}=1-\int_{q^{\gamma}-1}^{\infty} \frac{d u}{u^{2}}[u+\beta] d u, \\
& I_{3}=\frac{1}{z q^{3}} \int_{q^{\gamma-1}}^{\infty} \frac{d u}{u^{z}}=\frac{1}{z(z-1) q^{(\gamma-1)}} \overline{(z-1)+s}
\end{aligned}
$$

Evaluating I_{1} and I_{2} we derive

$$
I_{1}=J_{1}+J_{2}+\frac{1}{z(z-1)} \cdot \zeta\left(z-1,1-\left\{\beta+q^{-s}\right\}\right)
$$

with

$$
\begin{aligned}
& J_{1}=\frac{1}{z}\left[\beta+\frac{1}{q^{s}}\right] \int_{q}^{\gamma-1} \\
& u^{2} \\
& J_{2}=\frac{1}{z} \int_{q \gamma-1}^{1-\left\{\hat{q}+q^{-s}\right\}}\left[u+\left\{\beta+q^{-s}\right\}\right\rfloor \\
& u^{2}
\end{aligned} d u .
$$

and

$$
I_{2}=J_{3}+J_{4}+\frac{1}{z(z-1)} \cdot \zeta(z-1,1-\{\beta\})
$$

with

$$
\begin{aligned}
& J_{3}=\frac{1}{z}\lfloor\beta\rangle \int_{q \gamma-1}^{\infty} \frac{d u}{u^{3}}, \\
& J_{4}=\frac{1}{z} \int_{q \gamma-1}^{\infty} \frac{\lfloor u+\{\beta\}]}{u^{z}} d u .
\end{aligned}
$$

By the proof of Lemma $1,\left[\beta+q^{-s}\right\rfloor-\lfloor\beta\rfloor=0$, so that

$$
J_{1}-J_{3}=0
$$

Furthermore, we show that $J_{3}=J_{4}=0$, since

$$
\begin{aligned}
& 0<q^{\gamma-1}+\left\{\beta+\frac{1}{q^{3}}\right\} \leqslant 1 \\
& 0<q^{\gamma-1}+\{\beta\} \leqslant 1:
\end{aligned}
$$

and
The first inequality follows by

$$
\begin{aligned}
& 0<q^{\gamma-1}+\left\{\beta+\frac{1}{q^{s}}\right\} \\
& =\frac{1}{q}+\frac{d}{q-1}\left(\frac{1}{q}-\frac{1}{q^{s}}\right)+\left\{-(0 . w)_{q, d}\right\}=A \text {. }
\end{aligned}
$$

In the case $w_{1}<0$ we have

$$
\begin{aligned}
A & \leqslant \frac{1-w_{1}}{q}-\sum_{i=2}^{s} \frac{w_{i}}{q^{i}} \\
& <\frac{1-d}{q}+\frac{1}{q}=\frac{2-d}{q} \leqslant 1 .
\end{aligned}
$$

For $w_{1}>0$ we have

$$
\begin{aligned}
& A=\frac{1}{q}+1-\frac{w_{1}}{q}-\sum_{i=2}^{s} \frac{w_{i}}{q^{i}}+\frac{d}{q-1}\left(\frac{1}{q}-\frac{1}{q^{s}}\right) \\
& \leqslant 1-\frac{d}{q(q-1)}\left(1-\frac{1}{q^{s}}\right)+\frac{d}{q-1}\left(\frac{1}{q}-\frac{1}{q^{s}}\right)=1
\end{aligned}
$$

Since

$$
\{\beta\}=\left\{\beta+\frac{1}{q^{*}}\right\}-\frac{1}{q^{*}}
$$

the same arguments work for the proof of the second inequality.
Inserting $z=1+x_{k}$ into $\Phi_{\beta, s}(z)$ we get

$$
\begin{array}{r}
a_{k i}=\frac{1}{2 k \pi i} \cdot\left(\frac{1}{1+\chi_{k}}\left(\zeta\left(\chi_{k}, 1-\left\{\beta+q^{-s}\right\}\right)-\zeta\left(\chi_{k}, 1-\{\beta\}\right)\right)\right. \tag{13}\\
\left.-\frac{1}{q^{(\gamma-1) \chi_{k}+s}}\right) \text { for } k \neq 0
\end{array}
$$

and the formula for $h_{k}(k \neq 0)$ is established.
In the instance $k=0$, we need

$$
\lim _{z \rightarrow 1} \Phi_{\beta, s}(z)
$$

Using the expansion of $\zeta(z, a)$ about $==1$ (compare with [6]) this limit turns out to be

$$
-\frac{1}{q^{s}}(1-\gamma) \log q+\log \Gamma\left(1-\left\{\beta+\frac{1}{q^{s}}\right\}\right)-\log \Gamma(1-\{\beta\})-\frac{1}{q^{s}}
$$

and a_{0} and thus h_{0} is computed immediately.
We continue our investigation by studying the average of the number of subblocks w that straddle the radix point :

Lemma 2. With $w, A_{q, d}(w, r)$ and $B_{2, d}(w, r)$ as in Lemma 1 resp. Corr. I we have

$$
\begin{equation*}
\frac{1}{m} \int_{0}^{m}\left(A_{q, d}(w, r)-B_{q \cdot d}(w, r)\right) d r=\frac{(s-1)}{q^{*}}-\frac{E_{w}(m)}{m} \tag{14}
\end{equation*}
$$

where $E_{u}(m)$ is bounded.
Proof. By Corollary 1

$$
\begin{aligned}
& \int_{0}^{m}\left(A_{q}, d(w, r)-B_{o, d}(w, r)\right) d r \\
& =\sum_{k=1}^{s-1} \int_{0}^{m}\left(\left\lfloor\frac{r}{q^{k}}+\beta+\frac{1}{q^{*}}\right\rfloor-\left\lfloor\frac{r}{q^{k}}+\beta\right\rfloor\right) d r \\
& =m \cdot \frac{s-1}{q^{s}}+\sum_{k=1}^{s-1} q^{k} g_{\hat{p}, s}\left(\frac{m}{q^{k}}\right)=m \frac{s-1}{q^{s}}-E_{w}(m)
\end{aligned}
$$

(with $g_{\beta, s}(1)$ from (7)).
Combining Theorem 1 and Lemma 2 yields an expression for

$$
\int_{0}^{m} B_{q}, d(w, r) d r .
$$

This integral equals the "truncated sum"

$$
\left.\begin{array}{rl}
q-1+d \tag{15}\\
q-1 \\
\hline
\end{array} B_{q, d}(w, 0)+B_{q, d}(w, 1)+\ldots+B_{q, d}(w, m-1)\right)
$$

rather than the desired sum

$$
B_{q, d}(w, 0)+_+B_{q, d}(W, m-1)
$$

Theorem 3. Let $B_{q, d}(w, n)$ denote the number of subblocks w in the $\langle q, d\rangle$-representation of $n \in N_{0}$, where w is a sequence of s digits not
starting with 0 . Then

$$
\frac{1}{m} \sum_{n=0}^{m-1} B_{q, d}(w, n)=\frac{1}{m} \int_{0}^{m} B_{q, d}(w, r) d r+\frac{d}{q-1} \frac{B_{q, d}(w, m)}{m}
$$

$$
\begin{equation*}
=\frac{\log _{q} m}{q^{s}}+H_{w}\left(\log _{q} m\right)-\frac{s-1}{q^{s}}+\frac{E_{w}(m)}{m}+\frac{d}{q-1} \cdot \frac{B_{q, d}(w, m)}{m} \tag{16}
\end{equation*}
$$

where H_{w} is the periodic function analyzed in Theorem 2 and $E_{w}(m)$ is bounded. Obviously, $B_{q, d}(w, m)=0(\log m)$.
3. FURTHER ANALYSIS OF THE ERROR TERM $E_{w}(m)$

It is not difficult to see that $E_{10}(m)$ oscillates in a rather irregular way. In order to get information about $E_{w}(m)$ we study its average value

$$
\frac{1}{m} \sum_{n=0}^{m-1} E_{w}(n)
$$

and prove the following
Theorem 4. Let $w=w_{1} \ldots w_{r} 0^{s-r}$ with $w_{1}, w_{r} \neq 0$ and β be defined as in Lemma 1. Then

$$
\text { (17) } \begin{aligned}
\frac{1}{m} \sum_{n=0}^{m-1} E_{w}(n)= & \frac{q^{s}-q}{2 q^{*}(q-1)}-\frac{s-1}{2 q^{s}}-\frac{1}{q^{s}} \sum_{k=0}^{s-1}\left\lfloor q^{k}\{\beta\}\right\rfloor \\
& +\sum_{k=r}^{s-1} \frac{2-\left\{q^{k} \beta\right\}}{q^{i}}+0\left(-\frac{1}{m}\right), m \rightarrow \infty
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
-\frac{1}{m} \sum_{n=0}^{m-1} E_{w}(n) & =-\frac{1}{m} \sum_{n=0}^{m-1} \sum_{k=0}^{s-1} q^{k} \cdot g_{\beta, s}\left(\frac{n}{q^{k}}\right) \\
& =-\frac{1}{m} \sum_{n=0}^{m-1} \sum_{k=0}^{s-1} q^{k} \cdot g_{\beta, s}\left(\left\{\frac{n}{q^{k}}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{m} \sum_{k=0}^{s-1}\left\lfloor\frac{m-1}{q^{k}}\right\rfloor_{n=0}^{q^{k}-1} q^{k} g_{\beta, s}\left(\frac{n}{q^{k}}\right) \\
& =-\sum_{k=0}^{s-1} \sigma_{k}+0\left(\frac{1}{m}\right)
\end{aligned}
$$

where

$$
\sigma_{k}=\sum_{n=1}^{q^{k}} q^{-k} \int_{0}^{n}\left(\left\lfloor\frac{t}{q^{k}}+\beta+\frac{1}{q^{s}}\right\rfloor-\left\lfloor\frac{t}{q^{k}}+\beta\right\rfloor-\frac{1}{q^{s}}\right) d t
$$

Now we have for $\delta \in \mathbb{R}$

$$
\int_{0}^{n}\left[\frac{t}{q^{k}}+\delta\right]=n[\delta]+\sum_{j=0}^{n-1}\left[\frac{j}{q^{k}}+\{\delta\}\right]+\left\{q^{k} \delta\right\}\left(\left\lfloor\frac{n}{q^{k}}+\delta\right]-\lfloor\delta\rfloor\right)
$$

and therefore, observing

$$
\left[\beta+\frac{1}{q^{3}}\right]-|\beta|=0
$$

respectively

$$
\left\{\beta+\frac{1}{q^{s}}\right\}=\{\beta\}+\frac{1}{q^{s}}
$$

a lengthy but elementary computation yields

$$
\begin{aligned}
& \sigma_{k}= \frac{\left(\left\{q^{k} \beta\right\}-\left\{q^{k}\left(\beta+\frac{1}{q^{k}}\right)\right\}\right)\left(\left\{q^{k} \beta\right\}+\left\{q^{k}\left(\beta+\frac{1}{q^{3}}\right)\right\}-3\right)}{2 q^{k}}+ \\
&+q^{k-s}\left(\{\beta\}-\frac{1}{2}\right)+\frac{1}{2} q^{k-23}-q^{-3}
\end{aligned}
$$

In the following we use that

$$
\left\{q^{k}\left(\beta+\frac{1}{q^{s}}\right)\right\}-\left\{q^{k} \beta\right\}= \begin{cases}q^{k-s} & \text { for } 0 \leqslant k \leqslant r-1 \\ q^{k-s}-1 & \text { for } r \leqslant k \leqslant s-1\end{cases}
$$

which may be verified along the lines of the proof of Lemma 1 ,

Thus we can rewrite σ_{k} as

$$
\frac{q^{k}\{\beta\}-\left\{q^{k} \beta\right\}}{q^{k}}-\frac{1}{2} q^{k-s}+\frac{1}{2} q^{-s}+\left\{\begin{array}{cc}
0 & \text { for } 0 \leqslant k \leqslant r-1 \\
\frac{\left\{q^{k} \beta\right\}-2}{q^{k}} & \text { for } r \leqslant k \leqslant s-1
\end{array}\right.
$$

which completes the proof of the theorem.

4. SUBBLOCK OCCURRENCES IN GRAY CODE REPRESENTATION

A Gray Code is an encoding of the integers as sequences of bits with the property that the representations of adjacent integers differ in exactly one binary position. As in [2], we restrict our considerations to the standard Gray (or binary reflected) Code. The following table shows the Gay Code representations of the first 16 nonnegative natural numbers (n refers to the number and k to the position).

n k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
1			1	1	1	1	0	0	0	0	1	1	1	1	0	0
2				1	1	1	1	1	1	1	1	1	0	0	0	0
3									1	1	1	1	1	1	1	1

In the k-th row we find the pattern $0^{2^{k}} 1^{2^{k+1}} 0^{2^{k+1}} 1^{2^{k+1}} 0^{2^{k+1}} \ldots$.
If we know how to count occurrences of subblocks in binary, then we can count occurrences of subblocks in Gray Code quite easily :

Then k-th bit in the Gray Code representation of an integer is simply the exclusire $O R$ of the k-th and ($k+1$)-st bits in the bincry representation of the same intcger. Regarding that the exciusive $O R$ is simply representable as addition mod 2 (\oplus) of the concerned bits, the subblock $H=W$. ... $u_{\text {s }}$ in Gray Code corresponds to one of the two patterns
$u(w)=u_{1} \ldots u_{s+1}$ resp. $v(w)=v_{1} \quad . . v_{s+1}$ where $u_{i}=\oplus_{j=1}^{i \cdot 1} w_{j}$ and $v_{i}=u_{i} \oplus 1$.
Thus we obtain as a corollary of Theorem 3:
Theorev 5. Let $B \mathrm{cc}(\mathrm{w}, n$) denote the number of sutblocks w in the Gray Code representation of $n \in \mathbf{N}_{O}$, where w is a sequence of s digits not starting with zero and let $u(w)$ resp. $v(11)$ be defined as above. Then

$$
\begin{gather*}
\frac{1}{m} \sum_{n=0}^{m-1} B r c(w, n)= \tag{18}\\
-\frac{\log _{3} m}{2^{s}}+H_{u(w)}\left(\log _{2} m\right)+H_{v(w)}\left(\log _{2} m\right)-\frac{s}{2^{s}}+0\left(\frac{1}{m}\right),
\end{gather*}
$$

where $H_{u(w)}$ resp. $H_{v(w)}$ are the periodic functions (for the instance $q=2$, $d=0)$ which are analyzed in Theorem 2.

REFERENCES

1. H. Delange, Sur la fonction sommatoire de la fonction sorme des chiffes, l^{\prime} Enseignement mathématique, Vol. 21 (1975), pp. $31-47$
2. Flajolet and L. Ramshaw, A note or Gray C de and Odd-Even Merge, SIAM J. Comput., Vol. 9 (1980), pp. 142-158.
3. P. Kirschenhofer, Subbl)ck occurr.n es in the q-ary representation of r, SIAM J. Alg. Disc. Math., Vol. 4 (1983), pp. 231-236.
4. D.E. Knuth. The Art of Computer Programming, Vol. 2, second ed., AddisonWesley, Reading, MA, 1980
5. H. Prodinger, Generalizing the sum of digits function, SIAM J. Alg. Disc. Math., Vol. 3 (1982), pp. 35-42.
6. E.T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Univ. Press, Cambridge, 1927.
Received April, 1983
