ON THE MOMENTS OF THE SUM-OF-DIGITS FUNCTION

P.J. Grabnert, P. Kirschenhofer, H. Prodinger and R.F. Tichyt

1. INTRODUCTION

In a recent paper in The Fibonacci Quarterly R.E. Kennedy and C.N. Cooper [12] dealt
with the second moment of the sum-of-digits function in the decimal number system,. explicitly
stating the question for higher moments as an open problem. We consider this question in the

sequel.

Let v(n) represent the total number of 1-digits in the binary representation of the
integer n. It is'not hard to see that

M(N) = ;Nv(n) = §Nlog,N +o(NlogN), (1.1)

since asymptotically the binary representations contain roughly as many 0’s as 1’s. The

Trollope-Delange formula is more surprising: It expresses S(n) in an exact formula (cf. [21], [5])
M(n) = INlog,N + Né,(log,N), (1.2)

where §,(u), a ’fractal function’, is a continuous, periodic, nowhere differentiable function with

an explicit Fourier expansion involving the Riemann zeta function.

The argument given by Delange is based on a combinatorial decomposition of binary

representations of integers, followed by a computation of the Fourier coefficients of the fractal
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function. This exact formula was used to analyze register allocation algorithms, or equivalently
the order of random ’channel networks’ (cf.[9]). It was later extended to some non-standard
digital representations of integers. Cantor representations were considered in {17}, and Gray
code [8] was studied for the purpose of analyzing sorting networks. In [13] occurrences of blocks
of digits in standard g¢-ary representations, in [15] subblock occurrences in Gray code
representation and in [3] the subsequence u(3n) of the classical Thue-Morse sequence u(n) were
investigated. In a recent paper [11] this result was extended to digit expansions with respect to
linear recurrences. As general surveys we refer to Stolarsky’s article [20] and to [16]. As an

especially important paper in this area we mention Brillhart, Erdés and Morton’s paper [2].

J. Coquet [4] studied in detail higher moments of the binary sum-of-digits function.
Later in [14] the second moment M,(N) (and. the corresponding centered mioment) was

investigated in detail and the following exact formula was proved by Delange’s method:
My(N)= T v(n)? =LlogN + NzogzNG + 61(Iog2N)) + Né,(log,N), (1.3)
n<N

where §,, 6, are continuous nowhere differentiable functions of period 1 and §, is the function

that occurred in (1.2). This formula can already be found in [4] and Coquet could also est.ah:lish

similar formulae for higher moments but without proving the continuity of the remainder terms.

By the same approach such exact formulae can be proved for arbitrary g-ary number systems.
qg-—1

Zqu(n)2 = (T) NloggN + Nlog Nny(log,N) + Nny(log,N), (1.4)
n<

where 7, and 7, are continuous nowhere differentiable functions of period 1 and Iogq denotes the
logarithm to base g, as usual. In [12] R.E. Kennedy and C.N. Cooper rediscovered a weaker
result for the decimal system:

T vo(n)? = 20.25Nlog,oN + o(NlogN).
N

n <

In Section 2 we use Delange’s approach to compute the third moment in the binary number
system, the g-ary case can be settled by similar but more elaborate computations. In Section 3
we sketch this approach in the case of higher moments!. In the final Section 4 we present an
exposition of a purely analytic approach using Mellin transform. In [7] this approach was

applied to establish exact and asymptotical formulae in various cases of digital sums. By this

1Wh‘ile finishing the present paper, the authors became aware of a manuscript due to J.-M. Dumont and A.
Thomas where the corresponding result is proved for digital systems generated by substitution automata. This

more general result is proved by difficult and less elementary methods.
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method we get automatically the mean and the Fourier-coefficients of the periodic functions. In
detail we apply this method to the expectation (first moment) of the g-ary sum-of-digits

function. In the case of higher moments some analytic problems remain to be solved.

2. DELANGE’S APPROACH: THE THIRD MOMENT

In order to compute the third moment Mg of the binary sum-of-digits function we
introduce the following notation:
| _ |z t _ 1
fit)= l‘st— 2 lQTﬁJ’ 9;(t) = £ (1) -5

Thus we have

N
Mﬂﬂ:] X5 (0F; (0F ; (0t
0 (J11 Jo .73)
3 N
3\ _ 1
=3 Oz [] 5 o000
k=0(k)2 0 (jIY""jk 1 k .
where the summation is extended over all k-tuples (71)+ -+ Jg) of non negative integers

<L =|log,N] Denoting the integral for £k = 3 by I; we obtain

My(N) = I3+3(L+ )MV - 3L+ 1200 () + F(z +1)°
| = I+ N3K + K2G+36) + K5, + 3v) + Gus, - 36, + 1), (2.1)
where §; = §,(log,N) and 8, = 6,(logyN') are the periodic fluctuations of the first and second
moments occurring in (1.2) and (1.3); K =log,N and y=1-{log,N}. We note that

6,(0) = 6,(1) = 6,(0) = (1) = 0.
Now we compute the remaining integral

N
I; :(1'1 r 43 2 +6 2 ) Jo gil(t)gh(t)gjs(t)dt

=j2=j3 j1=j2¢j3 j1<j2<j3

= }Z Z; J:Jgj(t)dt +%L ZJ: J;vgj(t)dt +6 > J;vgjl(t)gjz(t)gjs(t)dt.

11 < j2 < j3
Notice that the first two parts of this equality follow from the fact that gj(t) is piecewise
constant and gj(t)2 = % For the last summation we obtain
. N . — S
- 5 973+l J 9(273 7 T14)g(273 ™ I2u)g(u)du,
71 <7iy<i3 0<Jj;3<jp<izslL 0

where g(u) = [2u}—2u] - % Now transform the index of summation as follows:



266 P.J. GRABNER, P. KIRSCHENHOFER, H. PRODINGER AND R.F. TICHY

N
L . :
=3 2t [P afuge
0573 <ip<szsL =0 1<dy<dy<i Y

Notice that the inner summation can be extended to infinity without changing the value and set

k=L—-j. Hence

k+ (log,N)~1 :
= 2 #! J’ ConM =1 )2 u)g(2%2u)du
0.<j3<3jy<iz<lL k20 1<d,<d, /0 '
— 21 ~{logyN} T 9~ kh3(2{10g2N} - 121:)’
k>0 -
where hj is the periodic function defined by ,
z d d '
h(@)= % | s e (2.2)
1<d <d,J0

We observe that the integrals occurring in (2.2) are integrals over distinct Rademacher

functions; hence h4(1) = hs(%) = 0. Thus setting

Y(z) =22~ 1Fh e 2k (okalad -1y (2.3)
k>0 '
we obtain a continuous and 1-periodic function with ¥(0) = ¢(1) = 0. Therefore we have
Iy = N(k38, - 3y) + (16, + 2+ 326, - 322 4 6u(1 - v)) (2.4)
By combining (2.1) and (2.4) we derive
Ma(N) = N(EE® + K2 +36,) + K36, +36,) + 65), (25)
where
b3 = b3(logyN) = %U‘sz - %y251 + %ys - %51 + % + %y‘sl - %yz +6%(1 - y). (2.6)
Thus we have proved
Theorem 1: The third moment of the binary sum-of-digits function satisfies
& T, )=} (09N +(§ +§61(109,) (g, N
+ (%—61(1092N) + %62(1092N))10g2N + 65(log,N),
where 6 is a continuous and periodic function with period 1 defined by (2.6).

Remark: Obviously this result can be extended to g¢-ary representations. However, the

computations are much more involved.
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3. DELANGE'S APPROACH: THE GENERAL CASE

In the following we sketch the computation of the s-th moments M4 of the binary sum-

of-digits function:

Adopting analogous notations as in the previous section we start from

=" T g0 e

13,

(le

=3 (L[~ . (b)...9. (t)dt
go(k 2,_J0 ul»;mg’l( ). ()dt.

In the following we evaluate the integral I, appearing in the last expression. To this
end we observe that g?(t) =5 so that it is meaningful to group together multiple occurrences of
g’s with the same index j and to distinguish odd and even and even frequencies since

gg_n(t) = 52];_", while g?" + l(t) = E%Egj(t)'

The above described grouping of g’s with the same index induces a set partition of the
subindex set {1,...,k}, where we have to count separately the numbers p resp. r of blocks of odd

resp. even cardinality. Let us denote by
S(kip,r)

the .number of the above described set partitions. Then we may compute I  as follows: (We

use the abbreviation (z);, = z(z - 1)...(z =k +1).)

p! N
L= SE5Stinn+1-p), [

05:1<...<:p5L 1 p

(Observe that for given index values yeenip belonging to the p blocks of odd cardinality, there
are (I4+1—Dp), possibilities to choose the r index values belonging to the blocks of even

cardinality differently from i,,..., ip.)
The sums

N
Ep(N) = g,-l(t)...gip(t)dt

05i1<...<ip5LJ0

can be treated in exactly the same manner as in Section 2 for the instance p = 3 and yield
FEH(V) = 7, (log, V),
where

— 9l —{z} ~i ig—1+{z}
() =2 g hy (2271 1Y)
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with

T . M

hy(z) = 3 [ 9(u)g(u2't)...g(u2 P~ Ddu.
14 <ip <<y 40

Note that h,(z) is a continuous function with A (m)=0 for all m€Z, so that T,(z) is a

periodic function of period 1.

Collecting all contributions and rewriting L = |log,N| as L =log,N —{log,N} we

obtain

Theorem 2: The s-th moment of the binary sum-of-digits function satisfies

s—1 .
N T vyln) = Llog,N)* + T (log;N)in(log,N)
n< N 1=0

where 7,(z) are continuous periodic functions of period 1 that can be expressed ‘explicitly as

described before.

Remarks: ‘1) the numbers S(k; p,r) do not seem to have been studied in the literature. However
similar numbers satisfying interesting recurring relations occur already in [4]. Of course the
numbers S(k; p,r) are related to the classical Stirling numbers of the second kind [19] via

Y S(kip,r)=S(k,j).

ptr=j
The trivariate generating function of the S(k;p,r) is easily obtained via the operator method for

combinatorial constructions as described systematically in [10}:

k
> S(k;p, r)zpy’;—' = exp (z sinhz + y(cosh z —1)).
p' r, :

2) From Theorem 2 it is not difficult to compute expressions for the higher centralized

moments.

4. MELLIN PERRON APPROACH: AN EXPOSITION

As announced in the introduction we present an analytic method to compute digital

sums. The method makes use of the so called Mellin Perron summation formula:

c+ toco
_n\y_ 1 2 % s ds
SyelRem | S ghy
¢~ 100

This formula is well known in analytic number theory and can be proved by an application of
Mellin transform (cf. [1], [6], [7]). We demonstrate the use of this method in the case of the

expectation of the g-ary sum-of-digits function.
Theorem 3: [Delange] The sum-of-digits function v4(n) satisfies

-1
So(N) = §N vg(n) = ‘7—2— Nlog N + N&(log,N),
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where 6(u) is representable by the Fourier series §(u) = Zk ¢ Zékez”ik“’ and

60=q (Iogq27r ) ;q) %—l,

) for k #0,

k
Proof: Let v (k) be the largest exponent such that quq( ) divides k£ and v (k) be the sum-of-
digits function in the g-ary representation. We have v (k) — v (k—1) =1~ (g~ 1)v,(k), so that
S4(N) resembles a double summation of vg(k). Furthermore it is well-known and easy to see

that

k 2 1 ks q.! — 1
Thus, from (4.1), with a; =1~ (¢ —1)v,(k), we get the basic integral representation
2 4 ioo
=
Sq(n) = 37 s(s + Ty (4.2)

2 — 100
The integrand in (4.2) has a double pole at s = 0 and simple poles at s = x; (note that the pole

s =1 of {(s) is canceled out). Shifting the line of integration to R(s) = —% and taking residues

into account we get

S(n) = nIogqn + nFO(Iogqn) —nR(n), (4.3)
where the remainder term is
—:1{-}- 100
$
¢ —q s ds
R(n) = 5k J ey (4.4)
-3~ 100

so that there only remains to prove that R(n) =0 when n is an integer. The integral converges
since |{(— + i) < |t |4 (cf. [22]).
Using the expansion
s —
Z,_g =q¢+(g-1) (@ +d*+¢*..)

in (4.4) which is legitimate since now R(s) < 0, we find that R(n) is a sum of terms of the form

—-‘-]i--i-ioo

1 s ds
ol O (et

- 100

1
1
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and each of these terms is 0 by virtue of

1 .
—Z+:oo

1 s d —
| gy
1

4—100

which is an immediate consequence of the summation formula for arithmetic progressions and

(4.1). a

Remark: It is clear from the discussion above that an exact formula for a sum-of-digits function
is obtained each time the analytical behavior of the corresponding Dirichlet generating function
is sufficiently known. In the case of higher moments of the sum-of-digits function this procedure
can be worked out only formally: serious convergence problems occur. In order, to overcome
these difficulties one would have to know precise bounds for the rate of growth‘of the analytic

continuation of the Dirichlet series

x .vnk
§ o)

n=1 1

along vertical lines.
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