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1 . INTRODUCTION

In a recent paper in The Fibonacci Quarterly R.E. Kennedy and C .N. Cooper [12] dealt

with the second moment of the sum-of-digits function in the decimal number system, explicitly

stating the question for higher moments as an open problem . We consider this question in the

sequel .

Let v(n) represent the total number of 1-digits in the binary representation of the

integer n . It is~ not hard to see that

M 1(N) = E v(n) = ZNlog2N + o(NlogN), (1.1)

since asymptotically the binary representations contain roughly as many 0's as 1 .'s . The

Trollope-Delange formula is more surprising : It expresses S(n) in an exact formula (cf. [21], [5])

M 1 (n) = 2Nlog2N + N51(log2N),

	

(1.2)

where 61 (u), a 'fractal function', is a continuous, periodic, nowhere differentiable function with

an explicit Fourier expansion involving the Riemann zeta function .

The argument given by Delange is based on a combinatorial decomposition of binary

representations of integers, followed by a computation of the Fourier coefficients of the fractal

tThese authors were supported by the Austrian Science Foundation Project Nr. P8274-PHY .

263
G. E. Bergum et al . (eds.), Applications of Fibonacci Numbers, Volume 5, 263-271 .
m 1993 Kluvrer Academic Publishers. Printed in the Netherlands .



264

	

P.J. GRABNER, P. KIRSCHENHOFER, H. PRODINGER AND R.F. TICHY

function. This exact formula was used to analyze register allocation algorithms, or equivalently

the order of random 'channel networks' (cf.[9]) . It was later extended to some non-standard

digital representations of integers . Cantor representations were considered in [17], and Gray

code [8] was studied for the purpose of analyzing sorting networks . In [13] occurrences of blocks

of digits in standard q-ary representations, in [15] subblock occurrences in Gray code

representation and in [3] the subsequence u(3n) of the classical Thue-Morse sequence u(n) were

investigated. In a recent paper [11] this result was extended to digit expansions with respect to

linear recurrences . As general surveys we refer to Stolarsky's article [20] and to [16] . As an

especially important paper in this area we mention Brillhart, Erdos and Morton's paper [2] .

J. Coquet [4] studied in detail higher moments of the binary sum-of-digits function .

Later in [14] the second moment M2(N) (and the corresponding centered moment) was

investigated in detail and the following exact formula was proved by Delange's method :

M2(N) tt ~Nv(n)2 = 41og2N + Nlog2N
4 + 51(log2N) + Nb2(log2N),

	

(1 .3)
<

	

(
where 61 , 6 2 are continuous nowhere differentiable functions of period 1 and 6 1 is the function

that occurred in (1 .2) . This formula can already be found in [4] and Coquet could also establish

similar formulae for higher moments but without proving the continuity of the remainder terms .

By the same approach such exact formulae can be proved for arbitrary q-ary number systems .

n <
NVq(n)2 = q

2
1 Nlog2N + N1og gNrll(IoggN) + Nri 2 (loggN),

	

(1 .4)

where r) 1 and 772 are continuous nowhere differentiable functions of period 1 and logq denotes the

logarithm to base q, as usual . In [12] R.E. Kennedy and C.N. Cooper rediscovered a weaker

result for the decimal system :

E vlo(n)2 = 20.25NIog10N + o(NlogN) .
n<N

In Section 2 we use Delange's approach to compute the third moment in the binary number

system, the q-ary case can be settled by similar but more elaborate computations . In Section 3

we sketch this approach in the case of higher moments' . In the final Section 4 we present an

exposition of a purely analytic approach using Mellin transform . In [7] this approach was

applied to establish exact and asymptotical formulae in various cases of digital sums . By this

'While finishing the present paper, the authors became aware of a manuscript due to J.-M . Dumont and A .

Thomas where the corresponding result is proved for digital systems generated by substitution automata . This

more general result is proved by difficult and less elementary methods .



ON THE MOMENTS OF THE SUM-OF-DIGITS FUNCTION

	

265

method we get automatically the mean and the Fourier-coefficients of the periodic functions. In

detail we apply this method to the expectation (first moment) of the q-ary sum-of-digits

function. In the case of higher moments some analytic problems remain to be solved .

2.DELANGE'S APPROACH : THE THIRD MOMENT

In order to compute the third moment M3 of the binary sum-of-digits function we

introduce the following notation :

f j(t) = ISJ , - 2 [Tt- gi(t)+ lJ,

	

_ fj(t) 2.

Thus we have

N
M3(N) = f

	

f j (t)f j (t)f ;3(t)dt
0

	

(Jl,j2,j3) 1

	

2

kE CkJ 231 k f 0

	

E

	

9jl (t) . . .g jk(t)dt,
(jl, . . .,jk)

where the summation is extended over all k-tuples (j1 , . . ., jk) of non negative integers

< L = L1og 2Nj . Denoting the integral for k = 3 by 13 we obtain

M3(N) = I 3 + 2(L + 1)M 2 (N) -4(L + 1) 2M1 (N) +s(L + 1)3

= I3 + N(gK3 + K2 (8 + 481) + K(22 + gy) + (2y52 - 4y26 1 + 8y 3)}, (2.1)

where 61 = 61(log 2N) and 62 = 82 (log2N) are the periodic fluctuations of the first and second

moments occurring in (1 .2) and (1 .3) ; K = log2N and y = 1 - {1og2N} . We note that

81 (0) = 51(1) = 82(0) = 82(1) = 0 .

Now we compute the remaining integral

N
13 =

	

+ 3

	

+ 6

	

f 9j1(t)gj 2(t)gj3(t)dt
J1=72=j3

	

J1=72033

	

11<j2<j3

	

0

=4 j
JNg(t)di+L

	

;4j
J'gj(t)dt+6 Jl <E<J3 JNg(t)gj(t)gj()dt .

o
j123t

Notice that the first two parts of this equality follow from the fact that gj(t) is piecewise

constant and gj(t) 2 = 4. For the last summation we obtain

E

	

_

	

E

	

2j3+ 1 f N9(2 J3 - J1u)9(2J3 - J2u)9(u)du,
j1 <J2 <J3

	

0< 4 1 <42<43<L 0

where g(u) = L2uJ - 2Luj - 2 . Now transform the index of summation as follows :
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j: = j3, d1 : = j3 - i1 , d2 : = j3 - j2 . Thus we obtain

N
_ E 2j + 1

	

~ 23+1 g(2dl u)9(2d2u)9(u)du .
0<jl <j2 <j3 <L j=o

	

1<dl<d2<j 0

Notice that the inner summation can be extended to infinity without changing the value and set
k = L - j . Hence

F,

	

= 2L+1 E

	

J2k+(lo92N)_1 g(u)g(2 d1u)g(2d2 u)du
o_<4 <4 <j3 <L

	

k>0 1<d l < d 2 0

=
21 - {1092N

E 2 - k
h3(211092N} -12 k ),

where h3 is the periodic function defined by

h3(X) J og(u)9(2d1u)9(2d2u)du .

	

(2.2)
1

	

z
We observe that the integrals occurring in (2.2) are integrals over distinct Rademacher
functions; hence h3(1) = h3(2) = 0 . Thus setting

~'(x) = 22 - {x}

	

2 - kh3(2k2{x} -1 )

	

(2.3)
k>0

we obtain a continuous and 1-periodic function with 0(0) _ 1(1) = 0 . Therefore we have

13 = N(K41 - gy) + ( - 2bi + 4 + 4xb 1 - 8x2 + 6z/r(1 - y))) .

	

(2.4)

By combining (2 .1) and (2 .4) we derive

M3(N) = N(gK3 +K2(g + 461) + K(4 1 + 22)+ 63),

where

63 = 63( 1o92N) = Zy62 - 4y 251 + 8y 3 _ 16
1 + 4 +j y61- 3 2 + 6t(1- y) .

Thus we have proved

Theorem 1 : The third moment of the binary sum-of-digits function satisfies

Nn

	

v2(n)3= g ( 1o92N)3 +(g+41(lo92N))(1o92N)2

+(4b1 (1og2N) + 2 2 (1og2N))log 2 N + b3(1og2N),

where b3 is a continuous and periodic function with period 1 defined by (2 .6) .

Remark: Obviously this result can be extended to q-ary representations . However, the
computations are much more involved .
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3 . DELANGE'S APPROACH : THE GENERAL CASE

In the following we sketch the computation of the s-th moments M 3 of the binary sum-
of-digits function :

Adopting analogous notations as in the previous section we start from

N
fj (t) . . .f j (t)dtf °

	

(J1, . . .,i,)

	

1

2°kE k

	

1 k

f
0 (il

	

''k) gjl(t) . . .g?k(t)dt .

In the following we evaluate the integral I k appearing in the last expression. To this
end we observe that g3~(t) = 4, so that it is meaningful to group together multiple occurrences of
g's with the same index j and to distinguish odd and even and even frequencies since
gjn(t) = 22n , while 97n+1 ( t ) = 2zngj(t) .

The above described grouping of g's with the same index induces a set partition of the
subindex set {1, . . ., k}, where we have to count separately the numbers p resp . r of blocks of odd
resp. even cardinality . Let us denote by

S(k ;p,r)

the ; number of the above described set partitions . Then we may compute I k as follows: (We
use the abbreviation (x)k = x(x - 1) . . .(x - k + 1) .)

I k Z kp-! S(k ; p, r)(L + 1 - P)r
(' N

	

~,

	

gil

	

P(t). . . g i (t)dt .p,r 2

	

P

	

0

	

O<il< . . .<iP <L
(Observe that for given index values i 1 , . . .,i p belonging to the p blocks of odd cardinality, there
are (1 + 1 - P) r possibilities to choose the r index values belonging to the blocks of even
cardinality differently from i l , . . ., ip .)

The sums

EP(N) _

	

E

	

J N gi (t) . . .gi (t)dt
0<il< . . .<iP <L 0

	

1

	

P

can be treated in exactly the same manner as in Section 2 for the instance p = 3 and yield

NEP(N)
=TP (log2 N),

where

rp(x) = 21- {x} 1:
2
-'hp (2i2

-1 + {x})
i>0

M,(N)
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with

hP(x) =

	

E

	

J s
9(u)9(u2h1 ) . . .g(u2'P-1 )du .

1<il<i2< . . .<i

	

1

	

0P -
Note that hp(x) is a continuous function with hp(m) = 0

periodic function of period 1 .

p, r, k

for all m E Z, so that r p(x) is a

Collecting all contributions and rewriting L = llog2N} as L = log 2 N - {log2N} we
obtain

Theorem 2 : The s-th moment of the binary sum-of-digits function satisfies
"-1

NN .Ev2(n)' = 2"(lo92N)" +iE0 ( 1o92N)'r!i( 1o92N)
where n i ( x) are continuous periodic functions of period 1 that can be expressed explicitly as
described before .

Remarks : '1) the numbers S(k; p, r) do not seem to have been studied in the literature . However
similar numbers satisfying interesting recurring relations occur already in [4] . Of course the
numbers S(k; p, r) are related to the classical Stirling numbers of the second kind [19] via

E S(k; p, r) = S(k, j) .
P+r=j

The trivariate generating function of the S(k; p, r) is easily obtained via the operator method for
combinatorial constructions as described systematically in [10] :

k
S(k; p, r)xpyrk~ = exp (x sinhz + y(cosh z - 1)) .

2) From Theorem 2 it is not difficult to compute expressions for the higher centralized
moments .

4. MELLIN PERRON APPROACH: AN EXPOSITION

As announced in the introduction we present an analytic method to compute digital
sums. The method makes use of the so called Mellin Perron summation formula :

C + i0c

an(1 - n l - 1

	

J

	

an
N" ds

n<N

	

N 2rt

	

n=1 n

	

s(s+1) .
C ioo

This formula is well known in analytic number theory and can be proved by an application of
Mellin transform (cf. [1], [6], [7]) . We demonstrate the use of this method in the case of the
expectation of the q-ary sum-of-digits function .

Theorem 3 : [Delange] The sum-of-digits function v q(n) satisfies

Sq(N) _ N v q(n) = q 2 1 NlogqN + Nb(log gN),
n < N
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where b(u) is representable by the Fourier series b(u) = 1: k E gbke21rikx and

60 = q 2 1 (l ogg27r - log q) - q 4 1 ,

_
bk

	

1
- log q ((Xk) fork $ 0,

where Xk = log q'

Proof: Let vg(k) be the largest exponent such that gvg(k) divides k and vg(k) be the sum-of-
digits function in the q-ary representation. We have vg(k) - Vq(k - 1) = 1 - (q - 1)vg (k), so that

Sq(N) resembles a double summation of vg(k) . Furthermore it is well-known and easy to see

that
vg(k) _ ((s)

k>1 k' - q

Thus, from (4 .1), with ak = 1 - (q -1)vg(k), we get the basic integral representation

2 + ioo

f
qs _Sq(n) = 2ai

	

q' - 1 ~(s)n' s( + 1).

	

(4.2)
2-ioo

The integrand in (4 .2) has a double pole at s = 0 and simple poles at s = X k (note that the pole

s = 1 of ((s) is canceled out) . Shifting the line of integration to 91(s) _ - 4 and taking residues

into account we get

S(n) = 2nlog gn + nF0(loggn) - nR(n),

	

(4.3)

where the remainder term is

- 1 +ioo4
R(n) =12ri 1

1 +00

so that there only remains to prove that R(n) = 0 when n is an integer . The integral converges
since ((- 4 + it) I « I t 4 (cf. [22]) .

Using the expansion

q' - 1 - q + (q - 1) (q' + q 2 ' + q3e . . .)

in (4.4) which is legitimate since now R(s) < 0, we find that R(n) is a sum of terms of the form

-4+ioo

tai

	

f

	

C(s)(gkn) Js ( + 1)'
1 - too4

q'-qa ds	(4.4)
q' - in s(s - 1)'
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and each of these terms is 0 by virtue of

-4+ioo
1 C(s)n" ds - 02 ;ri

	

f

	

s(s + 1)

	

,
1_4 _too

which is an immediate consequence of the summation formula for arithmetic progressions and

(4.1) .

	

0

Remark: It is clear from the discussion above that an exact formula for a sum-of-digits function

is obtained each time the analytical behavior of the corresponding Dirichlet generating function

is sufficiently known. In the case of higher moments of the sum-of-digits function this procedure

can be worked out only formally: serious convergence problems occur . In order., to overcome

these difficulties one would have to know precise bounds for the rate of growth of the analytic

continuation of the Dirichlet series

00 v(')k

n=1 n

along vertical lines .
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