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Analysis of a new skip list variant:
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For a skip list variant, introduced by Cho and Sahni, we analyse what is the analogue of horizontal plus vertical search
cost in the original skip list model. While the average in Pugh’s original version behaves likeQ logQ n, with Q = 1

q
a

parameter, it is here given by(Q + 1) logQ n.
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1 Introduction
Skip lists were introduced by Pugh (10) and analysed in (7; 4;9) and also some other papers.

We assume that the reader has a certain familiarity withskip lists,if (s)he wants to understand the origin of
the problem. To understand the analysis that we perform, no such prerequisites are necessary.

The variation that was suggested in (1) is best understood looking at the following example, taken from (1):
The data (3, 6, 7, 9, 12, 17, 19, 21, 25, 26)have a certain level associated to them, which follows the geometric

law P{level is = k} = pqk−1. And they are linked as indicated, which one can easily understand from the
diagram.
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We want to study the length of a path to reach a certain element. For instance, to reach25, we follow the path
9–17–19–25, and we record 4 steps. A step from the header to the data, as well as steps downwards between
header elements are not counted.

The values of the data are completely immaterial; only the levels are of relevance. So, in our example the
sequence is1213121412. We start from the highest level that still allows us to reachthe desired element, (here
3), and stay there as long as possible. Otherwise, we go down one level.

The process is easier understood, if we think about the sequencereversed, (here2141213121).
The path of interest starts then at the element to be found (here the second element of sequence), which has

level 1, and we scan the sequence, counting elements on the same level, until we find an element with the next
level (one level higher), etc. We thus “visit” the elements marked in boldface:2141213121, and we have 4
marked elements, which checks with the length of our search path.

Since elements to the left of where we start are irrelevant, we assume that we start with the first element. We
will study the parameterK(a1a2 . . . an), which we might call the number ofweak consecutive maxima,as we
count repetitions of the (current) maximum, and only allow the maximum to change to the next value (=1+ the
previous value).

For our probabilistic analysis, we assume that the levelsai are independently generated by the geometric law
with parameterq (with p = 1 − q).

We have two parameters, the levelI that has been already reached, and the counterK, that counts how often
the current maximumI has been either repeated or replaced byI + 1.

There is a small technical sublety: Sometimes it is useful toassume that we start at levelr, and withK = 1,
beforewe start to read the word. We will call this versionK〈r〉(n). For the skip list analysis, we assume that
the first symbol read defines the starting value; this versionwill be calledK(n). Of course, they are intimately
linked, and in a slight abuse of notation, we can say that

K(n) =
∑

r≥1

pqr−1K〈r〉(n − 1).

For the sake of clarity, we give the list of values for the word13112435351:

We use (standard) notation fromq-analysis:(x)n =
∏n−1

i=0
(1− xqi) and(x)∞ =

∏

i≥0
(1− xqi). Note that

(x)n = (x)∞/(xqn)∞, and the latter form makes sense also forn a complex number.
Furthermore, we useQ = 1/q, andL = lnQ.
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K〈1〉 I〈1〉 K〈2〉 I〈2〉 K〈3〉 I〈3〉 K〈4〉 I〈4〉 K〈5〉 I〈5〉

7 3 5 5 5 5 4 5 3 3

2 Generating functions
We consider the random variablesK〈r〉(n) andI〈r〉(n). Let

π(n; k, i) = P{K〈r〉(n) = k, I〈r〉(n) = i}.

(We don’t write the parameterr into this notation, in order not to overload it.)
As a warm-up, we start at levelr = 1. We have the backwards equation

π(n; k, i) = π(n − 1; k − 1, i − 1)pqi−1 + π(n − 1; k − 1, i)pqi−1 + π(n − 1; k, i)(1 − pqi−1 − pqi)

andπ(0; 1, 1) = 1.
We want to translate this into a trivariate generating function

F (z, u, v) =
∑

n,k,i≥0

π(n; k, i)znukvi.

Multiplying the backwards equation byznukvi we eventually get after a few routine simplifications (note
thatF (0, u, v) = uv):

F (z, u, v) =
1

1 − z

[

uv + pz
(

uv +
1

q
(u − q − 1)

)

F (z, u, qv)

]

.

Iterating, this gives

F (z, u, v) =
∑

j≥0

(pz)j

(1 − z)j+1
uvqj

j−1
∏

l=0

(

uvql +
u − q − 1

q

)

.

Settingu = 1 means ignoring theK-parameter and only counting the level. The corresponding generating
functions can be found in our recent paper (8).

However, we rather ignore theI-parameter here, which means that we setv = 1, to get

G(z, u) = F (z, u, 1) =
∑

j≥0

(pz)j

(1 − z)j+1
uqj

j−1
∏

l=0

(

uql +
u − q − 1

q

)

.

The modifications for the starting levelr are only minor:F (0, u, v) = uvr, otherwise the same functional
equation. Iteration produces the explicit form

F (z, u, v) = F 〈r〉(z, u, v) =
∑

j≥0

(pz)j

(1 − z)j+1
u
(

vqj
)r

j−1
∏

l=0

(

uvql +
u − q − 1

q

)

.

The generating function that is relevant to the skip list, is

F(z, u, v) = z
∑

r≥1

pqr−1F 〈r〉(z, u, v)
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=
u

q

∑

j≥1

(pz)j

(1 − z)j

qjv

1 − qjv

j−2
∏

l=0

(

uvql +
u − q − 1

q

)

,

and since theI-parameter is not relevant,

G(z, u) = F(z, u, 1) =
u

q

∑

j≥1

(pz)j

(1 − z)j

qj

1 − qj

j−2
∏

l=0

(

uql +
u − q − 1

q

)

.

Note that

[zn+1]G(z, u) =
u

q

n
∑

j=0

(pq)j+1

(

n

j

)

1

1 − qj+1

j−1
∏

l=0

(

uql +
u − q − 1

q

)

.

There is another way to get this generating function, which is morecombinatorial.There is a unique decom-
position of words:

(

r
(

N \ {r, (r + 1)}
)∗

)+(

(r + 1)
(

N \ {(r + 1), (r + 2)}
)∗

)+

. . .
(

s
(

N \ {s, s + 1}
)∗

)+

.

This expresses the fact that the level starts atr and ends ats, which must be summed over all possible choices.
If one translates this symbolic form accordingly, one gets

G(z, u) =
∑

1≤r≤s

s
∏

i=r

zupqi−1

1 − z + zpqi−1(1 + q − u)
.

We will give a direct proof in the sequel that the two forms ofG(z, u) coincide, which is surprisingly difficult.
In order to avoid confusion, we temporarily call the second form G(z, u); we will drop the bar once equality
has been established.

We substitutez = w/(w − 1). Thus

G(z, u) =
∑

1≤r≤s

(−1)s+1−r

s
∏

i=r

wupqi−1

1 − wpqi−1(1 + q − u)
.

Then, by general principles,

[zn+1]G(z, u) = (−1)n+1[wn+1](1 − w)n
∑

1≤r≤s

(−1)s+1−r

s
∏

i=r

wupqi−1

1 − wpqi−1(1 + q − u)

= (−1)n+1

n
∑

k=0

(

n

k

)

(−1)k[wn+1−k]
∑

1≤r,h

(−1)h

r+h−1
∏

i=r

wupqi−1

1 − wpqi−1(1 + q − u)

=

n
∑

k=0

(

n

k

)

(−1)k−1[wk+1]
∑

1≤r,h

(−1)h

h
∏

i=1

wupqi+r−2

1 − wpqi+r−2(1 + q − u)

=

n
∑

k=0

(

n

k

)

(−1)k−1 qk+1

1 − qk+1
[wk+1]

∑

h≥1

(−1)h

h
∏

i=1

wupqi−2

1 − wpqi−2(1 + q − u)
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=

n
∑

k=0

(

n

k

)

(−1)k−1 (pq)k+1

1 − qk+1
[wk+1]

∑

h≥1

(−1)h

h
∏

i=1

wuqi−2

1 − wqi−2(1 + q − u)
.

We still have to prove that

u

q

k−1
∏

l=0

(

uql +
u − q − 1

q

)

= (−1)k−1[wk+1]
∑

h≥1

(−1)h

h
∏

i=1

wuqi−2

1 − wqi−2(1 + q − u)

= [wk+1]
∑

h≥1

h
∏

i=1

wuqi−2

1 + wqi−2(1 + q − u)
,

or, in equivalent form:

u
k

∏

l=1

(

uql + u − q − 1
)

= [wk+1]
∑

h≥0

h
∏

i=0

wuqi

1 + wqi(1 + q − u)
.

Now set, withv = 1 + q − u,

H(w) :=
∑

h≥0

h
∏

i=0

wuqi

1 + wqiv
,

then
H(w) =

wu

1 + wv
+

wu

1 + wv
H(wq),

or
(1 + wv)H(w) = wu + wuH(wq).

With ak = [wk+1]H(w), we find(i)

ak + vak−1 = u[[k = 0]] + uqkak−1,

or
ak = u[[k = 0]] + (uqk − v)ak−1,

from which we find by iteration

ak = u

k
∏

l=1

(uql − v),

as desired.

3 Moments
We start from

[zn+1]G(z, u) =
u

q

n
∑

j=0

(pq)j+1

(

n

j

)

1

1 − qj+1

j−1
∏

l=0

(

uql +
u − q − 1

q

)

.

(i) We use Iverson’s notation:[[P ]] = 1 if P is true, zero otherwise.
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Differentiate this, then setu = 1 to get the average:

1 + Q(Q + 1)
n

∑

j=1

(pq)j+1

(

n

j

)

1

1 − qj+1

j−1
∏

l=1

(ql − 1)

= 1 + p(Q + 1)

n
∑

j=1

(pq)j

(

n

j

)

1

1 − qj+1
(−1)j−1(q)j−1

= 1 + p(Q + 1)

n
∑

j=1

(pq)j

(

n

j

)

1

(1 − qj+1)(1 − qj)
(−1)j−1(q)j

= 1 − p(Q + 1)
1

2πi

∫

n!(−1)n

z(z − 1) . . . (z − n)

(pq)z

(1 − qz+1)(1 − qz)

(q)∞
(qz+1)∞

dz.

This integral representation comes fromRice’s method:We cite the survey paper (3) for that. The contour
includes the poles1, 2, . . . , n and no others. Changing the contour, one is lead to compute the outside poles as
a compensation. Here, we have to consider the poles atz = 0 and atz = χk = 2πik/L. The machinery is
explained in more detail in the earlier skip list papers (7; 4).

Thus we compute

1 + p(Q + 1)[z−1]
n!(−1)n

z(z − 1) . . . (z − n)

(pq)z

(1 − qz+1)(1 − qz)

(q)∞
(qz+1)∞

= 1 +
Q + 1

L
Hn +

Q + 1

L
ln(p) − (Q + 1)α −

(1 + q)2

2pq
.

We use the (standard) abbreviation

α =
∑

i≥1

qi

1 − qi
.

So the averageEK(n + 1) is asymptotic to

(Q + 1) logQ n +
(Q + 1)γ

L
+

Q + 1

L
ln(p) − (Q + 1)α −

(1 + q)2

2pq
+ δ(logQ n) + 1.

To compute the second (factorial) moment, we have to differentiate

u

q

n
∑

j=0

(pq)j+1

(

n

j

)

1

1 − qj+1

j−1
∏

l=0

(

uql +
u − q − 1

q

)

twice with respect tou, and then setu = 1. This leads to

2(EK(n + 1) − 1) + 2p(Q + 1)

n
∑

j=1

(

n

j

)

(−1)j−1 (pq)j

(1 − qj+1)(1 − qj)
(q)j · T (j),

with

T (j) =

j−1
∑

l=1

ql + 1

q

ql − 1
= −Q(j − 1) − (Q + 1)

j−1
∑

l=1

ql

1 − ql
.
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Now it is easy to replace the discrete parameterj by a complex variablez:

T (z) = −Q(z − 1) − (Q + 1)

(

α −
∑

l≥1

ql+z

1 − ql+z
−

qz

1 − qz

)

.

Aroundz ∼ 0,

T (z) ∼
Q + 1

Lz
+

p

2q
− z

(

Lβ(Q + 1) + Q −
L(Q + 1)

12

)

,

with

β =
∑

l≥1

ql

(1 − ql)2
.

Thus the residue computation atz = 0 leads to

2p(Q + 1)[z−1]
n!(−1)n

z(z − 1) . . . (z − n)

(pq)z

(1 − qz+1)(1 − qz)

(q)∞
(qz+1)∞

T (z).

Notice the following expansion:

(q)∞
(qz+1)∞

∼ 1 − zLα + z2 L2

2
(α2 + β).

Now Maple computes the variance (fluctuations must be added,coming from the poles atχk). To summarize:

Theorem 1 Expectation and variance of theK(n)-parameter are asymptotic to

EK(n) ∼ (Q + 1) logQ n +
(Q + 1)γ

L
+

Q + 1

L
ln(p) − (Q + 1)α −

(1 + q)2

2pq
+ δ(logQ n) + 1,

VK(n) ∼ Q(Q + 1) logQ n + Q(Q + 1)
γ

L
+ (Q + 1)2

π2

6L2
+ Q(Q + 1)

ln(p)

L
− Q(Q + 1)α − (Q + 1)2β

−
2Q(Q + 1)

L
−

(Q + 1)2(5Q2 − 16Q − 1)

12(Q − 1)2
+ δVar(logQ n).

The constantsα andβ are given by

α =
∑

i≥1

qi

1 − qi
and β =

∑

i≥1

qi

(1 − qi)2
;

δ(x) andδVar(x) are small periodic functions. Their Fourier coefficients could be given in principle.

Note that we actually did the computations forK(n+1) instead ofK(n), but that does not make a difference
for the main terms displayed here.

4 The cumulative K-parameter
So far, in terms of the proposed new skip list, we computed the(average) cost to get to the last element. (Recall
that for the analysis we think about the reversed sequence, thus we start with the first element.) But one also
wants to know the cost to get to any of the other elements. So, we compute here theaverage cumulative cost

EK(1) + · · · + EK(n).



8 Guy Louchard and Helmut Prodinger

This is easy on the level of generating functions; it just means a multiplication by1/(1 − z):

1

1 − z
G(z, u) =

u

q

∞
∑

j=0

(pqz)j+1

(1 − z)j+2

1

1 − qj+1

j−1
∏

l=0

(

uql +
u − q − 1

q

)

.

Now we differentiate this with respect tou, and setu = 1:

z

(1 − z)2
+ (Q + 1)

∞
∑

j=1

(pz)j+1

(1 − z)j+2

qj

1 − qj+1
(−1)j−1(q)j−1.

This time it is more convenient to read off the coefficient ofzn:

n + (Q + 1)

∞
∑

j=1

pj+1[zn−j−1]
1

(1 − z)j+2

qj

1 − qj+1
(−1)j−1(q)j−1

= n + (Q + 1)

n−1
∑

j=1

pj+1

(

n

j + 1

)

qj

1 − qj+1
(−1)j−1(q)j−1

= n + Q(Q + 1)

n
∑

j=2

pj

(

n

j

)

qj

(1 − qj)(1 − qj−1)
(−1)j(q)j−1.

Thus, using Rice’s integral once again, which this time usesa contour that enclosed the poles2, . . . , n we must
look at

n − Q(Q + 1)[(z − 1)−1]
n!(−1)n

z(z − 1) . . . (z − n)
pz qz

(1 − qz)(1 − qz−1)
(q)z−1

= n − Q(Q + 1)[z−1]
n!(−1)n

(z + 1)z(z − 1) . . . (z − n + 1)
pz+1 qz+1

(1 − qz+1)(1 − qz)
(q)z

= n + nQ(Q + 1)[z−1]
(n − 1)!(−1)n−1

(z + 1)z(z − 1) . . . (z − n + 1)
pz+1 qz+1

(1 − qz+1)(1 − qz)
(q)z .

This is eventually evaluated with the help of Maple.

Theorem 2 The expected value of the cumulativeK(n)-parameter is given by

n

[

(Q + 1)
Hn−1

L
+ (Q + 1)

ln(p)

L
− (Q + 1)α −

Q + 1

L
−

Q2 + 3

2(Q − 1)
+ δcum(logQ n)

]

.

Of course, one could replaceHn−1 by lnn + γ.

5 Additional analysis
As we explained in the introduction, in our parameter, stepsdownwards in the header structure as well as the
single step from to the header to the actual data are not included. The latter one is just one step, so it does not
require analysis. The first one, however, is the difference between themaximumof the word and thelevel I
finally reached.

Now it is a folklore result that the maximum (sometimes called height) is∼ logQ n (see (11; 6)). The level
that is reached at the end is a parameter typically encountered inapproximate counting,see (2; 8; 5), and is also
∼ logQ n. Consequently, the difference of maximum and final level is of lower order of growth. An asymptotic
expansion will appear in the final paper.
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6 The K-parameter for permutations
In this short section, we consider, instead of words, permutations (which can also be interpreted as special
words). The definition of theK(n)-parameter is the same.

Consider the probabilityπ(n, l) that theK(n)-parameter is≥ l. Then the permutation must look like

(r)w1(r + 1)w2(r + 2) . . . (r + l − 1)wl.

Note thatw1 . . . wl is any permutation ofn − l letters; there are(n − l)! of them. The number of ways to split
them intol groups is

(

n−1

n−l

)

. The number of choices for the first letterr = 1, . . . , n + 1− l is (n + 1− l). Thus

π(n, l) =
1

n!
(n − l)!

(

n − 1

n − l

)

(n + 1 − l) =
1

(l − 1)!
−

1

n

1

(l − 2)!
.

Therefore we find the expectation:

EK(n) ∼

n
∑

l=1

π(n, l) ∼
(

1 −
1

n

)

e.

A similar computation gives the variance (again apart from exponentially small terms):

VK(n) ∼ e(3 − e) +
e(2e − 3)

n
−

e2

n2
.

7 Conclusion
The K-parameter analysed in this paper is the analogue of the combined horizontal and vertical cost in the
original skip list. This parameter ison averageasymptotic to∼ Q logQ n, as shown for instance in (9; 7). Our
present analysis gives a leading term(Q + 1) logQ n, so the logarithmic behaviour is preserved (as predicted
in (1)), but with a larger constant.

In the section on the cumulativeK-parameter we discussed theaverageof the total search cost, the parameter
path length, which, for a given worda1 . . . an is defined to be

P(a1 . . . an) := K(a1 . . . an) + K(a2 . . . an) + · · · + K(an).

For the average this does not make a difference, but higher moments and distributionare different. This
parameter is, apparently, much harder to analyse. We hope toreport on it in a subsequent publication.
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