
JOURNAL OF COMBINATORIAL THEORY, Series A 42, 310-316 (1986)

Note

Two Selection Problems Revisited

P. KIRSCHENHOFER AND H . PRODINGER

Technical University, A-1040 Vienna, Austria

Communicated by the Managing Editors

Received January 31, 1985

1 . INTRODUCTION

Two classical problems in combinatorial analysis are the enumeration of
subsets with linear successions and subsets with circular successions, which
were first solved by Kaplansky [4] . Hwang [2] and Hwang, Korner and
Wei [3] considered the more general cases of these distribution problems
where several circles respective lines are considered simultaneously . The
original proofs, which are by direct combinatorial or inductive arguments,
are rather lengthy . In this note we want to show that by the exclusive use
of generating functions short and easy proofs can be achieved . Also this
approach leads in a natural way to alternative and new formulae .

In the following we write [z"] Az) for the coefficient of z" in the formal
Laurent series f (z ) .

2. SUBSETS WITH CIRCULAR SUCCESSIONS

Let gn.k,, denote the number of k-subsets of a circle of size n with exactly I

circular successions . By Kaplansky [4] one has (except for trivial cases)

n Ck1

C

n-k- 1

/
g»,k,r=k I

// k - I - 1

Let
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denote a corresponding generating function. Following [l ; (2.3 .22)],

kgn,k(t)=n[w n ](wt+W
2 +w 3 + . . . ) k ,

	

gn.o(t)= 1 .

	

(2.3)

(This follows easily by decomposing the circle into parts starting with each
selected node; each of the k parts contributes a factor wt + w2 +w3+ ----
Considering all n-node patterns we apply all n rotations to get each of the
desired configurations k times.) Hence

with

TWO SELECTION PROBLEMS REVISITED

gn(Z; t)

	

Y, 9,,,k(t) Zk

k-0
w 2 k Zk

=1+n[wn]
k (

wt+ 1 -w) k

1 - n[wn] log
1-(1+tz)W+z(t-1)

= 1-w

= an(Z ; t) + r" (Z; t) - 6n,0,

	

(2.4)

,l

a+T=1+tz,

	

Qi=z(t-1) .

	

(2.5)

After these preliminaries we turn to the case of m nonempty circles with
n l , . . ., n, nodes respectively . Let

g{nl, . .,n„t}(Z't)= Z g{nl, • . ,n,tt},k(t) Zk
k>-0

denote the polynomial such that the coefficient of zk t` is the number of
k-subsets with 1 circular successions in total . Thus

rn

	

m
g{n	n.)(z, t) -

	

g ni (Z, t) -

	

(Qnt + ant ) •
i=1

	

i=1

In order to evaluate this product we use some shorthand notations :
n = n, + --- + n .. and, for any subset S 9 M = { 1, . . ., m 1, "n(S) _ Y_;, S n;

t Eg{nl, . . . .+tm}(Z ;~) (S)Tn-n(S)
SAM

- E
Sgm

	

SSM
2n(S) < n

	

2n(S) =n

W 2

(orn(S)t
n-n(S)

+ 6n-n(S)Tn(S) ) +

	

E

	

Qn(S)Zn(S)
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Regarding that QT = Z(t - 1) this can be written as

(t - 1)n(S) Zn(S)(Q n - 2n(S) + 'Cn - 2n(S) -_

	

Sn-2n(S),0)
SSM

2n(S) < n

such that

Starting from (2 .7) we have

ginlnm}(z, t

g{nl, . . .,nm},k(t) = L (t - 1 )n(S) gn - 2n(S),k - n(S)(t),
SSM

which is the main result of Hwang [2] .
In order to demonstrate the advantages of the generating functions

approach, we deduce the following alternative formula (2.11) .
For preparation let a be the solution of (2.5) with Q(0; t) = 1 . We will use

"formal residue composition", i.e ., an equivalent to Lagrange inversion for-
mula (compare [1 ; (1 .2.2)]), with the substitution

Z=
u(1 + u) , (2.9
1 + to

so that

and

dz _ 1 + 2u + tu2

	

_ (t-1)u

du

	

(1 + tu) 2

	

1 + to '

T
l+u .

	

_ 1+2u+tu 2

1--1+tu'

	

~-T	
l+tu

	

(2.10)

(2.8

M
1 1 (,n1 + 7Iti

)
i=1

M

1 1 (Qni + 0.-n'(t - 1 ) n ' Zni )
i= 1

(t- 1)n(S) Zn(S)an-2n(S) ,

SSM

With substitution (2.9) from above the calculus of formal residues shows
that



[Zk] g{n~, . . .,nm}(Z, t)
u k+1 dz

Cu
k] (Z)

	

du g{nl,...,nm} (Z 7 t )

k] (1+tu)k+1 1+2u+tu2
[u

	

(1+u)k+1 (1+tu)2

X (1 +u)n-2n(S)

= Z
S=M

TWO SELECTION PROBLEMS REVISITED

X (1 +tu)k-1-n(S) .

According to 1 + 2u + tu t = u(1 + tu) + (1 + u) we have

g{n,,.. .,n,,,}(t)

(t- 1)n(S) E t;
k-n(S)1Cn-n(S)-k- 11

S-M

	

~~0 {( i

	

k-n(S)-j-1

+
k-1-n(S) n-n(S)-k)

	

(2.11)
(

	

j

	

)(k-n(S)- j

SAM
(t - 1 )n(S) u

"(S )(1 + u )n(S)

(1 + tu)n(s)

(t-1)n(S) [uk-n(S)](1+2u+tu2)(1+u)n-n(S)-k-1

3. SUBSETS WITH LINEAR SUCESSIONS

Let fn,k,! denote the number of k-subsets of a chain of size n with exactly 1
linear successions. By Kaplansky [ 4] :

313

(Note that the coefficient of t' in the j-sum coincides with gn-2n(S),k-n(S),j
whenever these indices are nonnegative, which will not be true for all
values of S g M. Thus (2.8) and (2.11) are similar but essentially different .)

fn,k,r=Ck
1 11(n k k 1 1)

	

(3.1)

fn,k (t) = E, ,,,k,! t'.
r ;,: 0

n, following [1 ; (2.3 .15)], compare (2.3) for the idea of proof,

(t) [Wn](W+W2+ . . .)(Wt+W2+W3+ . . .)k-1(l+W+W2 . . .)~ fn.0(t)= 1
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and further

fn (Z ; t) _

	

Jn.k(t) Zk

k,0
k-1

=1+[W"] Z Wk(1-W)-2(t+
W

l-W)

	

Zk
k,l
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=[w",(1	 1 w +1zww
(1- (1+tz)W+z(t-1) W2)-1J

	

)

Ew"I
1-(t -1)zw

	

1 - 1 )=
W(v-i)

	

1-Qw 1-iw

1
v-i

(Un+1-Tn+l-(t-1)Za"+(t-1)ZT")

=	-7 (,,n+1(1-'C)- n+l(1~1

	

-Q)).

As in Section 2 we consider now the case of k-selections of m nonempty
chains with cardinalities n l , . . ., nm . Using analogous notations as in Sec-
tion 2 we find

m
f{nl, . . ..nm}(Z, t)

	

~, f{nl nm} .k(t) Zk =

	

fn;(z, t)
k,0

	

i=1
m
11 (,ni+1 (1 -i)-i" +l(1 -Q)).
i=1

With the substitution (2.9) this yields

[Zk ~ J {nl n, }(Z, t)

uk (1
+tu)k+1 1+2u+tu2

	

(l+tu)m

(1+u)k+l (1+tu)2 (1+2u+tu2 )m

m

	

1+u u(t-1 )n;+1 un;+1
(•

	

1+u)n
;+ 1 1+tu + (1+tu)n;+1

i=1

uk

	

(1+tu)k-I-n
=

(1 +2u+ tu2)m-1 (1 +u )k+1

m
•

	

fj ((1+u)"i +2 (1+tu)n,+(t-1)n ;+lun;+2)
i=1

Cuk-n(S)-21SI ](I+21. +tu2 ) -(m )n(S)+ISI
SSM

•

	

(1 +tu)k-I-n(S) ( 1 +u )n-n(S)+2m-2IS1-k-1



I

1

I

f{nt,,nm},k(t)=

For t = 0 this

TWO SELECTION PROBLEMS REVISITED

Writing 1 + 2u + tu2 as (I+ u)2 + (t - 1) u2 we get :

E z

	

(m-1)i

	

(t - 1)n(S)+ISI+i
SSM i>_0

x [uk - n(S) - 21ST - 2i](1+ u )n - n(S) -2 1s1 - k -2i+ 1 (1+tu)k - I - n(S)

E C
-(M - 1)1 (t- 1)n(S) +ISI+itj

C

k- 1 -n(S)1

S-M i,l-0

	

l

	

J~

n-(n-2 ISI -k-2i+ 1) .
x

	

k-n(S)-2 ISI -2i- j

is Theorem 1 of [3] . We note also that

[t i]

(i+m2)(n(S)-

	

1 I SI +il

S_ M Ij ~0 .

n(S)+ISI-i+j k-1 -n(S) n-n(S)-2 jSj -2i-k+ 1
x(-1)

	

(

	

j

	

X k-n(S)-2 jSj -2i- j)

(3.6)

Using the identity 1 + to = 1 + u + (t - 1) u we get the alternate formula

f{nt, . ..,nm},k(t)= E

	

E (-(m -1)~ (t
- 1)n(S)+ISI+i+j

SSM i,j>0

k-1 -n(S) n-2n(S)-2 ISI -2i-j)
. ((3.7)x

j

	

k-n(S)-2 ISI -2i- j

A third formula of similar type is obtained by writing 1 + 2u + tu2 in
(3.4) as (1+u)+ u(1+tu):

f{nt, . . .,n,,,},k(t)=

	

-(m(t-1)n(S)+ISI tj
SSM i,j-0

x(i+k-1-n(S))Cn-n(S)+m-2 ISI-k-i

	

(3.8)
j

	

k-n(S)-2 ISI -i- j
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