ON THE ORDER OF THE RECURSION RELATION OF MOTZKIN NUMBERS OF HIGHER RANK

HELMUT PRODINGER ${ }^{\dagger}$

Abstract. For Motzkin paths with up- and down-steps of heights 1 and 2, the minimal recursion is of order 6 , not of order 4 , as conjectured by Schork.

We consider higher rank Motzkin numbers, as suggested by Schork [2]: There are up-steps $(1,1),(1,2), \ldots,(1, r)$ with respective weights a_{1}, \ldots, a_{r}, down-steps $(1,-1)$, $(1,-2), \ldots,(1,-r)$ with respective weights c_{1}, \ldots, c_{r}, and a level-step $(1,0)$ with weight b.

Let us first consider the classical case $r=1$. The generating function $M(z)$ of these paths satisfies the equation

$$
M=1+b z M+a z M c z M,
$$

whence

$$
\frac{1-b z-\sqrt{1-2 b z+b^{2} z^{2}-4 a z^{2} c}}{2 a z^{2} c}
$$

Schork's first problem is to find a recursion for the numbers $m_{n}=\left[z^{n}\right] M(z)$.
This can be automatically solved with Maple's program gfun (written by Salvy et al.): The procedure algeqtodiffeq translates the (algebraic) equation for $M(z)$ into an equivalent differential equation:

$$
2+\left(3 b z-b^{2} z^{2}+4 a z^{2} c-2\right) M+\left(-z+2 b z^{2}-z^{3} b^{2}+4 z^{3} a c\right) M^{\prime} .
$$

The procedure diffeqtorec translates the differential equation into a recursion:

$$
\left(-b^{2}+4 a c\right)(n+1) m_{n}+(5 b+2 b n) m_{n+1}-(n+4) m_{n+2}=0,
$$

which solves already this first problem. ${ }^{1}$
Now let us move to the instance $r=2$. Let us assume that the weights are all 1. In the paper [1] we find the equation for the generating function:

$$
z^{4} M^{4}-z^{2}(1+z) M^{3}+z(2+z) M^{2}-(1+z) M+1=0 .
$$

Thus (again with gfun)

$$
\begin{aligned}
-4- & 100 z^{2}+56 z
\end{aligned} \quad+\left(3750 z^{6}-5000 z^{5}+250 z^{4}+700 z^{3}+160 z^{2}-92 z+4\right) M ~\left(-328 z^{2}+32 z-15250 z^{6}-20 z^{3}+4750 z^{4}+11250 z^{7}-650 z^{5}\right) M^{\prime} .
$$

[^0]and
\[

$$
\begin{aligned}
& 625(n+3)(n+2)(n+1) m_{n}-125(n+3)(n+2)(7 n+27) m_{n+1} \\
& -50(n+3)\left(5 n^{2}+24 n+23\right) m_{n+2}+\left(41890+30860 n+7540 n^{2}+610 n^{3}\right) m_{n+3} \\
& +\left(-6844-5151 n-1214 n^{2}-91 n^{3}\right) m_{n+4}-(n+7)\left(23 n^{2}+301 n+976\right) m_{n+5} \\
& +2(2 n+13)(n+8)(n+7) m_{n+6}=0 .
\end{aligned}
$$
\]

(This recursion also appears in [1].)
Bruno Salvy has kindly informed me that this recursion of order 6 is minimal.
Schork [2] conjectured that there should be a $(2 r+1)$-term recursion (=order $2 r$).
Thus, the conjecture does not hold.

References

[1] C. Banderier and P. Flajolet. Basic analytic combinatorics of directed lattice paths. Theoret. Comput. Sci., 281(1-2):37-80, 2002. Selected papers in honour of Maurice Nivat.
[2] M. Schork. On the recursion relation of Motzkin numbers of higher rank. Online Journal of Analytic Combinatorics, 2:\#3, 2007.

Helmut Prodinger, Mathematics Department, University of Stellenbosch, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

[^0]: Date: February 29, 2008.
 ${ }^{1}$ After sending a draft of this note to M. Schork, he informed me that he could now also establish this recurrence together with Mansour and Sun.

