DETERMINANTS CONTAINING RISING POWERS OF FIBONACCI NUMBERS

HELMUT PRODINGER

AbSTRACT. A matrix containing rising powers of Fibonacci numbers is investigated. The LU-decomposition is guessed and proved; this leads to a formula for the determinant. Similar results are also obtained for a matrix of Lucas numbers.

1. Introduction

Carlitz [1], motivated by earlier writings, loc. cit., computed the determinant

$$
\left|\begin{array}{ccccc}
F_{n}^{r} & F_{n+1}^{r} & F_{n+2}^{r} & \cdots & \\
F_{n+1}^{r} & F_{n+2}^{r} & F_{n+3}^{r} & \cdots & \\
F_{n+2}^{r} & F_{n+3}^{r} & F_{n+4}^{r} & \cdots & \\
\cdots & \cdots & \cdots & \ddots & \\
& & & & F_{n+r}^{r}
\end{array}\right|
$$

with the result

$$
(-1)^{\binom{r+1}{2}(n+1)} \prod_{j=0}^{r}\binom{r}{j} \cdot\left(F_{1}^{r} F_{2}^{r-1} \ldots F_{r}\right)^{2} ;
$$

F_{i} are Fibonacci numbers as usual.
In the present note we consider the rising powers analogue

$$
M=\left(\begin{array}{ccccc}
F_{n}^{\langle r\rangle} & F_{n+1}^{\langle r\rangle} & F_{n+2}^{\langle r\rangle} & \cdots & \\
F_{n+1}^{\langle r\rangle} & F_{n+2}^{\langle r\rangle} & F_{n+3}^{r(r)} & \cdots & \\
F_{n+2}^{r r\rangle} & F_{n+3}^{r r\rangle} & F_{n+4}^{\langle r\rangle} & \cdots & \\
\cdots & \cdots & \cdots & \ddots & \\
& & & & F_{n+r}^{\langle r\rangle}
\end{array}\right) .
$$

This is an $(r+1) \times(r+1)$ matrix, and we assume that the indices run from $0, \ldots, r$. The rising products are defined as follows:

$$
F_{m}^{\langle r\rangle}:=F_{m} F_{m+1} \ldots F_{m+r-1} .
$$

Although this definition looks more complicated than the one used by Carlitz, it is actually nicer, since we are able to compute (first guessing, then proving) the LU-decomposition of $M=L U$, from which the determinant is an easy corollary, via $\operatorname{det}(M)=U_{0,0} U_{1,1} \ldots U_{r, r}$.

2010 Mathematics Subject Classification. 11B39; 11C20; 15B36.
Key words and phrases. Fibonacci numbers; LU-decomposition; q-analogues; determinants.
The author was supported by an incentive grant of the National Research Foundation of South Africa.

2. The LU-decomposition of M

We start from the Binet form

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1} \frac{1-q^{n}}{1-q}
$$

with

$$
\alpha=\frac{1+\sqrt{5}}{2}, \quad \beta=\frac{1-\sqrt{5}}{2}, \quad q=\frac{\beta}{\alpha}=-\frac{1}{\alpha^{2}},
$$

so that $\alpha=\mathrm{i} q^{-1 / 2}$. We write further

$$
F_{n+j}=y \alpha^{j-1} \frac{1-x q^{j}}{1-q}
$$

with

$$
y=\alpha^{n} \quad \text { and } \quad x=q^{n} .
$$

Thus

$$
M_{i, j}=F_{n+i+j}^{\langle r\rangle}=\frac{y^{r}}{(1-q)^{r}} \alpha^{(i+j-1) r+\binom{r}{2}}\left(x q^{i+j} ; q\right)_{r} .
$$

Here, we use standard q-notation: $(x ; q)_{m}:=(1-x)(1-x q) \ldots\left(1-q^{m-1}\right)$.
This is the form that we use to guess (and then prove) the LU-decomposition. It holds for general variables x, y, q, α. However, for our application, we will then specialize. For these specializations, we need the notation of a Fibonacci-factorial:

$$
n!{ }_{F}:=F_{1} F_{2} \ldots F_{n} .
$$

Theorem 1. For $0 \leq i \leq j \leq r$,

$$
U_{i, j}=\frac{x^{i} y^{r}}{(1-q)^{r}} \alpha^{r(i+j)+\frac{r(r-3)}{2}} q^{\frac{3(i-1) i}{2}}(-1)^{i} \frac{(x ; q)_{j+r}(x ; q)_{i-1}(q ; q)_{j}(q ; q)_{r}}{(x ; q)_{i+j}(x ; q)_{2 i-1}(q ; q)_{r-i}(q ; q)_{j-i}}
$$

For $0 \leq j \leq i \leq r$,

$$
L_{i, j}=\frac{(x ; q)_{i+r}(q ; q)_{i}(x ; q)_{2 j}}{(x ; q)_{j+r}(x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)} .
$$

Corollary 1. The specialized versions (Fibonacci numbers) are as follows:

$$
\begin{gathered}
U_{i, j}=\frac{(n+j+r-1)!_{F}(n+i-2)!_{F} j!_{F} r!_{F}}{(n+i+j-1)!_{F}(n+2 i-2)!_{F}(r-i)!_{F}(j-i)!_{F}}(-1)^{\frac{i(i+1)}{2}+n i}, \\
L_{i, j}=\frac{(n+i+r-1)!_{F}(n+2 j-1)!_{F} i!_{F}}{(n+j+r-1)!_{F}(n+i+j-1)!_{F} j!_{F}(i-j)!_{F}} .
\end{gathered}
$$

Theorem 2. The determinant of the matrix M is given by

$$
\begin{aligned}
\operatorname{det}(M)=\prod_{i=0}^{r} U_{i, i} & =(-1)^{\binom{r+2}{3}+n\binom{\binom{2+1}{2}}{\left(r!_{F}\right.}^{r+1} \prod_{i=0}^{r} \frac{(n+i+r-1)!_{F}(n+i-2)!_{F}}{(n+2 i-1)!_{F}(n+2 i-2)!_{F}}} \\
& =(-1)^{\binom{r+2}{3}+n\left(\begin{array}{c}
\binom{+1}{2} \\
\end{array}\left(r!_{F}\right)^{r+1} .\right.} \square
\end{aligned}
$$

Although it is not necessary for our determinant calculation, we briefly mention two additional results (first general, then specialized):

Theorem 3.

$$
\begin{gathered}
U_{i, j}^{-1}=\frac{(q ; q)_{2 j}(q ; q)_{r-j}(x ; q)_{i+j-1}}{(q ; q)_{i}(q ; q)_{r}(q ; q)_{j-i}(x ; q)_{j-1}(x ; q)_{i+r}} \\
\times q^{-j(j-1)-i j+\frac{(i+1) i}{2}(-1)^{i}(1-q)^{r} \alpha^{-r(i+j)-\frac{r(r-3)}{2}} x^{-j} y^{-r},} \\
L_{i, j}^{-1}=\frac{(x ; q)_{i+r}(x ; q)_{i+j-1}(q ; q)_{i}}{(x ; q)_{j+r}(x ; q)_{2 i-1}(q ; q)_{j}(q ; q)_{i-j}} q^{\frac{i(i-1)}{2}-i j+\frac{(j+1) j}{2}} \alpha^{r(i-j)}(-1)^{i-j}, \\
U_{i, j}^{-1}=\frac{(n+2 j-1)!_{F}(n+i+j-2)!_{F}(r-j)!_{F}}{(n+j-2)!_{F}(n+i+r-1)!_{F} r!_{F}(j-i)!_{F} i!_{F}}(-1)^{i j+\frac{i(i-1)}{2}+r j}, \\
L_{i, j}^{-1}=\frac{(n+i+r-1)!_{F}(n+i+j-2)!_{F} i!_{F}}{(n+j+r-1)!_{F}(n+2 i-2)!_{F} j!_{F}(i-j)!_{F}}(-1)^{\frac{i(i-1)}{2}+i j+\frac{j(j+1)}{2}} .
\end{gathered}
$$

3. Sketch of proof

We must simplify the following sum:

$$
\begin{aligned}
\sum_{j} L_{i, j} U_{j, k} & =\sum_{j} \frac{(x ; q)_{i+r}(q ; q)_{i}(x ; q)_{2 j}}{(x ; q)_{j+r}(x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)} \\
& \times \frac{x^{j} y^{r}}{(1-q)^{r}} \alpha^{r(j+k)+\frac{r(r-3)}{2}} q^{\frac{3(j-1) j}{2}}(-1)^{j} \\
& \times \frac{(x ; q)_{k+r}(x ; q)_{j-1}(q ; q)_{k}(q ; q)_{r}}{(x ; q)_{j+k}(x ; q)_{2 j-1}(q ; q)_{r-j}(q ; q)_{k-j}}
\end{aligned}
$$

Apart from constant factors, we are left to compute

$$
\begin{aligned}
& \sum_{j=0}^{\min \{i, k\}} x^{j}(-1)^{j} q^{\frac{3(-1) j}{2}} \\
& \quad \times \frac{(x ; q)_{2 j}(x ; q)_{j-1}}{(x ; q)_{j+r}(x ; q)_{i+j}(x ; q)_{j+k}(x ; q)_{2 j-1}(q ; q)_{j}(q ; q)_{i-j}(q ; q)_{r-j}(q ; q)_{k-j}} .
\end{aligned}
$$

Zeilberger's algorithm [2] (the q-version of it) readily evaluates this as

$$
\frac{(x ; q)_{i+k+r}}{(x ; q)_{i+r}(x ; q)_{k+r}(x ; q)_{i+k}(q ; q)_{r}(q ; q)_{i}(q ; q)_{k}} .
$$

Putting this together with the constant factors, this proves that $L U=M$.

4. The Lucas matrix

We briefly discuss the case of the matrix \mathscr{M}, where each F_{i} is replaced by the Lucas number L_{i}. We also need the notation $m!_{L}:=L_{1} L_{2} \ldots L_{m}$.

We write $L_{m}=\alpha^{m}+\beta^{m}=\alpha^{m}\left(1+q^{m}\right)$ and $L_{n+j}=y \alpha^{j}\left(1+x q^{j}\right)$, with $y=\alpha^{n}$ and $x=q^{n}$, when it comes to specializations.

Theorem 4. The $L U$-decomposition $\mathscr{M}=\mathscr{L} \mathscr{U}$ is given by:

$$
\begin{aligned}
\mathscr{U}_{i, j} & =\frac{(-x ; q)_{j+r}(-x ; q)_{i-1}(q ; q)_{j}(q ; q)_{r}}{(q ; q)_{j-i}(-x ; q)_{i+j}(q ; q)_{r-i}(-x ; q)_{2 i-1}} x^{i} y^{r} q^{\frac{3 i(i-1)}{2}} \alpha^{r(i+j)+\frac{r(r-1)}{2}}, \\
\mathscr{L}_{i, j} & =\frac{(-x ; q)_{i+r}(-x ; q)_{2 j}(q ; q)_{i}}{(-x ; q)_{j+r}(-x ; q)_{i+j}(q ; q)_{j}(q ; q)_{i-j}} \alpha^{r(i-j)}, \\
\mathscr{U}_{i, j}^{-1} & =\frac{(-x ; q)_{2 j}(-x ; q)_{i+j-1}(q ; q)_{r-j}}{(-x ; q)_{j-1}(-x ; q)_{i+r}(q ; q)_{r}(q ; q)_{i}(q ; q)_{j-i}} \\
& \times x^{-j} y^{-r} q^{-j(j-1)-i j+\frac{i(i+1)}{2}} \alpha^{-r(i+j)+\frac{r(r-9)}{2}}(-1)^{i-j}, \\
\mathscr{L}_{i, j}^{-1} & =\frac{(-x ; q)_{i+r}(-x ; q)_{i+j-1}(q ; q)_{i}}{(-x ; q)_{j+r}(-x ; q)_{2 i-1}(q ; q)_{j}(q ; q)_{i-j}} q^{i(i-1)-i j+\frac{j(i+1)}{2}} \alpha^{r(i-j)}(-1)^{i-j} .
\end{aligned}
$$

Theorem 5. The specialized (Fibonacci/Lucas) forms are:

$$
\begin{aligned}
\mathscr{U}_{i, j} & =\frac{(n+j+r-1)!_{L}(n+i-2)!_{L} j!_{F} r!_{F}}{(n+i+j-1)!_{L}(n+2 i-2)!_{L}(j-i)!_{F}(r-i)!_{F}} 5^{i}(-1)^{\frac{i(i-1)}{2}+n i}, \\
\mathscr{L}_{i, j} & =\frac{(n+i+r-1)!_{L}(n+2 j-1)!_{L} i!_{F}}{(n+j+r-1)!_{L}(n+i+j-1)!_{L} j!_{F}(i-j)!_{F}}, \\
\mathscr{U}_{i, j}^{-1} & =\frac{(n+2 j-1)!_{L}(n+i+j-2)!_{L}(r-j)!_{F}}{(n+j-2)!_{L}(n+i+r-1)!_{L} r!_{F}(j-i)!_{F} i!_{F}} 5^{-j}(-1)^{i j+\frac{i(i-1)}{2}+(n+1) j}, \\
\mathscr{L}_{i, j}^{-1} & =\frac{(n+i+r-1)!_{L}(n+i+j-2)!_{L} i!_{F}}{(n+j+r-1)!_{L}(n+2 i-2)!_{L} j!_{F}(i-j)!_{F}}(-1)^{\frac{i(i+1)}{2}+j i+\frac{j(j-1)}{2}} .
\end{aligned}
$$

Theorem 6. The determinant of the matrix \mathscr{M} is given by

$$
\begin{aligned}
\operatorname{det}(\mathscr{M})=\prod_{i=0}^{r} U_{i, i} & =\prod_{i=0}^{r} \frac{(n+i+r-1)!_{L}(n+i-2)!_{L} i!_{F} r!_{F}}{(n+2 i-1)!_{L}(n+2 i-2)!_{L}(r-i)!_{F}} 5^{i}(-1)^{\frac{i(i-1)}{2}+n i} \\
& =\left(r!_{F}\right)^{r+1} 5^{\binom{r+1}{2}}(-1)^{\binom{r+1}{3}+n\binom{(r+1}{2} .} \square
\end{aligned}
$$

References

[1] L. Carlitz, Some Determinants Containing Powers of Fibonacci Numbers. Fibonacci Quart., 4(2):129134, 1966.
[2] M. Petkovšek, H. Wilf, and D. Zeilberger. $A=B$. A.K. Peters, Ltd., 1996.

Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa E-mail address: hproding@sun.ac.za

