DETERMINANTS CONTAINING RISING POWERS OF FIBONACCI NUMBERS
HELMUT PRODINGER

ABSTRACT. A matrix containing rising powers of Fibonacci numbers is investigated. The
LU-decomposition is guessed and proved; this leads to a formula for the determinant.
Similar results are also obtained for a matrix of Lucas numbers.

1. INTRODUCTION

Carlitz [ 1], motivated by earlier writings, loc. cit., computed the determinant
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F; are Fibonacci numbers as usual.
In the present note we consider the rising powers analogue
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This is an (r + 1) x (r + 1) matrix, and we assume that the indices run from O, ...,r. The
rising products are defined as follows:

F :=F,Fpi1-. Py

Although this definition looks more complicated than the one used by Carlitz, it is actu-
ally nicer, since we are able to compute (first guessing, then proving) the LU-decomposition
of M = LU, from which the determinant is an easy corollary, via det(M) = U, ,U, ; ... U,,.
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2. THE LU-DECOMPOSITION OF M

We start from the Binet form
an_ﬂn _ n—11_q
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so that a = ig~'/2. We write further
1—xq’
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with
y=a" and x=q".
Thus
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Here, we use standard g-notation: (x;q),, := (1 —x)(1—xq)...(1—q™™1).

This is the form that we use to guess (and then prove) the LU-decomposition. It holds
for general variables x, y, q, a. However, for our application, we will then specialize.
For these specializations, we need the notation of a Fibonacci-factorial:

Tl!F = Fle...Fn.

Theorem 1. For 0<i<j<r,
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Corollary 1. The specialized versions (Fibonacci numbers) are as follows:
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Theorem 2. The determinant of the matrix M is given by
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Although it is not necessary for our determinant calculation, we briefly mention two
additional results (first general, then specialized):

Theorem 3.
Ul = (45 9)2i(q; - (x5 @isj
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3. SKETCH OF PROOF

We must simplify the following sum:
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Apart from constant factors, we are left to compute

min{i,k}
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Zeilberger’s algorithm [2] (the g-version of it) readily evaluates this as
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Putting this together with the constant factors, this proves that LU = M.
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4. THE LUCAS MATRIX

We briefly discuss the case of the matrix .#, where each F; is replaced by the Lucas
number L;. We also need the notation m!; := L;L,...L,,.

We write L, = a™+p™ = a™(1+q™) and L,,,; = ya/(1+xq’), with y = a" and x = ¢",
when it comes to specializations.

Theorem 4. The LU-decomposition M = £ % is given by:
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Theorem 5. The specialized (Fibonacci/Lucas) forms are:
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Theorem 6. The determinant of the matrix # is given by
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