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1 . INTRODUCTION AND MAIN RESULTS

In this paper we are concerned with the analysis of special recursive algorithms

for traversing the nodes of a planted plane tree (ordered tree ; planar tree) . Some by

now classical results in this area are due to KNUTH [7], DE BRUIJN, KNUTH and RICE [1],
FLAJOLET [2], FLAJOLET and ODLYZKO [3], FLAJOLET, RAOULT and VUILLEMIN [4], KEMP [6]

and others and are summarized in the next few lines :

The most important .tree structure in Computer Science are the binary trees . The in-

order traversal (KNUTH [7]) is the following recursive principle :

Traverse the left subtree

Visit the root

Traverse the right subtree .

The most straightforward implementation uses an auxiliary stack to keep necessary

nodes of the tree . . The analysis of the expected time of the visit procedure is clear-

ly linear in the size of the input tree . To evaluate recursion depth means to deter-

mine the average stack height as a function of the size of the tree . The recursion

depth or height h of the binary tree is recursively determined as follows : If the fa-
mily B of binary trees is given by the symbolic equation

B = a +

then h(c) = 0 and h( t

	

2 ) = 1 + max(h(t l ),h(t 2 )} .

In [3] FLAJOLET and ODLYZKO determined the average value h n of h in the family Bn
of binary trees of size n to be

h ti 2J .
n

The recursive visit procedure can be optimized in the case of binary . trees by elimina-

ting endrecursion : the resulting iterative algorithm keeps at each stage a list of

right subtrees that still remain to be explored . The storage complexity of this opti-

mized algorithm is easily seen to correspond exactly to the so-called left-sided

height h defined by

h* (a) = 0, h

	

= max(1+h*(t1),h*(t2)} .

Recalling that the rotation correspondence (KNUTH [7 ;2 .3.2]) transforms a binary tree

of n-1 internal (binary) nodes into a planted plane tree with n nodes, the average

storage complexity of the optimized algorithm follows immediately by a result of DE

BRUIJN, KNUTH and RICE (1] about the average beight of planted plane trees :



h ti VTn ,
n

where the index n again refers to the size of the trees .

It was already proposed in KNUTH's book to consider this kind of questions for

other families of trees . Dealing with the family P of planted plane trees defined by

P = o + ! + A + /~\ + . . .
P

	

P p PPP

there are several meaningful analogues of the left-sided height of binary trees :

u(o) = 0 ; u(?) = u(t) ; (

	

= max{l+u(t1), . . .,1+u(tr-1),u(tr)}, r>_2 :
tl . .

v(o) = 0 ; v(

	

= max{r-i+v(t i )l1<_isr}
t . .

w(o) _ ; w(9) = 1 + w(t) ; (t

	

t

	

= max{1+w(t1),w(t2), . . .,w(tr)}, r>_2

1
.
.- r

The "heights" u, w are better understood as follows . u counts the maximal number of

edges not being a rightmost successor of a node in a chain connecting the root with a

leaf . w counts the maximal number of edges which are leftmost successors of a node in
a chain connecting the root with a leaf . For example we have for the tree t depicted

below the values u(t)=2, v(t)=4, w(t)=3 .
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A short reflection tells us that u determines the recursion depth of the optimized

'tree traversal algorithm . (The non-optimized algorithm corresponds to the treatment

of DE BRUIJN, KNUTH and RICE [11 .)

The interpretation of v is a bit more complex : Recall that a binary tree can be

used to represent arithmetic expressions ; a simple strategy of the evaluation is "from

right to left", i .e . tov evaluate

	

we evaluate t2 , use one register to keep that
1

value, evaluate t1 and then perform "op" . It is clear that the maximal number of reg-

isters during the evaluation of a binary tree is exactly h .

Planted plane trees are well suited to encode arithmetic expressions where k-ary

operations may occur for any k . The same strategy as in the case of binary trees leads

to v (evaluating t

	

from right to left during the consideration of t i already
1

	

r
r-i registers are used to keep intermediate values) . .

The interest in w originates from another source ; however since this parameter fits

well in the concept of asymmetric heights we have decided to include it into our dis-

cussion .

In any instance we are interested in the average value u n , v n , wn of the "height"

u, v, w of the trees in Pn , i .e . the trees of size n in P . Our main results are :



a)

	

u n = Yn- - 1 + 0(n
-1 / 2 )

b) vn = 4 -
2 + 0(n -1/2 )

C)

	

wn
= ~~ +

0(n1/4+e), for all c>O .

These results are achieved by means of a detailed singularity analysis of correspond-

ing generating functions in the following section .

THEOREM .
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2 . PROOFS AND MINOR RESULTS

Let Ph (z), Uh (z), Vh (z), Wh (z) be the generating functions of trees in P with or-

dinary height or "height" u, v, w, respectively, sh .and y(z)=(1-J1-4z)/2 the generat-

ing function of all trees in P . Then the generating functions of the sums of "heights"

of trees of equal size are given by

hI0(y-P h)' h70(y-Uh),
h7.(y-V )

and hI (y
-Wh) .

It is well known [1] that

PO (z) = z ; Ph (z) = z/(1-Ph-1(z))

	

and

	

(2)
J

= u
1-u	

h+1

	

u

Ph(z)
3'+u 1-u h+2 where z = (1-2 .

LEMMA 1 . Uh (z) = P2h+1 (z) '

Proof . We have UO(z) _ Z and because of

Uh = o + 1 + / \ + ~~
Uh

	

-1 Uh

	

Uh-1 Uh-1 Uh

(with an obvious notation)
)

	

_	z	

U h (z) = z + 1 U hh-(z1(z)

	

, so that

	

Uh

	

1 - j
h-1

from which Lemma 1 follows immediately from (2) by induction .

An alternative proof can be given by defining the following map *
:Uh - _ P2h+1

which turns out to be a bijection :

	

Y

1
2

1p:U0 } P1 is defined by

bn

and, recursively, for tEU h with subtrees t
rs EUh-1

1

(1)

(3)



306

LEMMA 2 . With u(z) = 1-4z and some cQnstants K 1 , .K2 we have for z -*-1/4

(y-Uh ) = K 1 - Slog u + ~ul/2 +K21J + . . .

Proof .

	

tf'-0

1

	

2h+1

(Y-U h ) -

	

(Y-P 2h+1 ) =

	

+u + +u

	

u 2h+1
h>_0

	

h?O

	

h>_O 1-u
Now

	

u 2h+1

	

k
= F

2h+1

	

k '1 ( ' )u
,

h?0 1-u

	

>1

with d(k) = d l (k) + d 2 (k), d2 (2k) = d(k) where d(k), d1 (k), d (k) denotes the number

of all, odd or even divisors of . k . So we have

(Y-Uh ) = l u + 11-u F d(k)uk _
1-u

2 2

	

d(k)u
2k

h>_0

	

k?0

	

(1+u) k?1

Now it is known [9] that

g(z) = 1-u

		

d(k)u k = Ki - flog u+ 1
1
/ 2 + K2u +

	

(4)
k>_1

Since u2 = ( l z ) 2 = 4u + 0(u 2 ) it follows that

	1-u
2 2

7 d(k)u 2k = K1 - 81og u + 41/2 + K2u +

(1+u) k>1

Further +. = y(z) _ (1- p1/2)/2 . Putting everything together the lemma follows . o

By a complex contour integration (compare [3]) the local 'expansion of Lemma 2

"translates" into the following asymptotic behaviour of the coefficients .

LEMMA 3 .

	

(y-Uh ) =

	

zn4n ( - - 1

	

3/2 + 0(~))
h>_0

	

n?0

	

4V;7 n

	

n

Dividing by I I'nI = n (
n-1 ) = ~ nn-3/2(1 + 0(n)) we achieve part a) of our main

theorem .

	

4

LEMMA 4 . Vh (z) = Ph+l (z)

Proof . In the same style as in Lemma 1 we find

V0 = o+?

	

and Vh =o+? +

	

+ . . . +

V

	

V0h

	

-1

and thus

V0 = 1-z , Vh = z + zV h (1 + V h-1 + Vh-1Vh-2
+ . . .+ Vh-l . . .VO) .

From this it is an easy induction to show that

V0 = z/(1-z) and V h = z/(1-Vh-1)'

Since V0 = P1 , a comparison with (2) finishes the proof .

We also present a proof by establishing a bijection cp:Vh + Ph+1' The first step

maps a tree With v-height <h and n nodes onto a binary tree with h *-height <h and

n-1 nodes . This is done recursively :

0 ho,



whence
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WO =oandW
h
=o+ ?

	

+

	

+

Wh-1

	

1

	

h

	

Wh-1

.WO = z and Wh = z + zWh-1/( 1-Wh)

from which the result follows by some easy manipulations . o

LEMMA 6 . h 1 (y-Wh ) _ - Slog c + K + 0( j1-4z l v ) for z -•
4

and for all v < 4 .

Proof . Because of the complexity of a complete treatment we omit the details and

only stress the main steps :

Solving the quadratic equation of Lemma 5 and expanding the square root it-follows -

that

fh = E+z fh-1 .(1 (E+z)2 h-1 )

With the substitution g h =

	

z
2fh ,(E+z )

z
gh = E+z gh-1 (1

- gh _ 1 + . . . ) +

Since
E+z = 1 - 4E + O(E 2 ) it turns out that the behaviour of

Having performed this recursive operation, the root is to be deleted ;'this is the

first step of our bijection . Regard that in fact cp is a version of the inverse of the

"rotation correspondence" [7] . The second step is the classical version of this

correspondence between binary trees with h -height <_h and n-1 nodes and planted plane

trees with ordinary height <_h+1 and n nodes . o

*
So the asymptotics of v n are immediate from the asymptotics of h n ([1]) and part

(b) of the main theorem is proved .

We are now left with the proof of part (c) of the main theorem . While in the proofs

of (a) and (b) our method was to establish an explicit connection with DE BRUIJN,

KNUTH and RICE's result for the ordinary height of planted plane trees, another

approach seems to be necessary to achieve (c) . The more function theoretic approach

was stimulated by the pioneering treatment. of the problem of the average height of

binary trees by FLAJOLET and ODLYZKO [3] .

LEMMA 5 . With c= A-4z and fh (z) = y(z)-W h (z) '

fh + (E+z)fh - zfh_ 1 = 0 .

Proof . We have

E gh is asymptotically



i
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equivalent to EG h , with

Gh.= (1-4E)
Gh-1

(1 - Gh _l ) .

Adopting FLAJOLET and ODLYZKO's technique [3] it follows that

hF0 G
h = - fl og E + K' + O(I c i v) for z -r

	

and all v <

from which the lemma is obvious . c

Again making use of the "translation technique" cited above we finally arrive at

part (c) of the main theorem .

We finish this section with some results related to the material from above .

Let h k(t) denote the maximal number of nodes of outdegree k in a chain connecting

the root with a leaf . Furthermore let H k,h (z) be the generating function of, the trees

t with h k (t) 5 h . Then we get

	 z 	k

	

kHk,h - 1-H k ~h - z H k,h + z Hk,h-1
With e k,h (z) = y(z) - H k,h(z) we get in a similar way as above

2k+2
ek,h = ek,h-1

(1 - ---k e k,h_1 ) + . . .

and therefore

hI0
ek h - 2k+3 log E + K k + 0(

so that the average value of the "height" nk (t) for trees t of size n is asymptotic-
ally equivalent to

k

	

,r~7n

	

(5)

21

A slightly different but related topic is now discussed : Following POLYA [8], resp .

FORLINGER and HOFBAUER [5], we consider pairs of lattice paths in the plane, each

path starting at the origin and consisting of unit horizontal and vertical steps in

the positive direction .

Let Ln,j be the set of such path-pairs (,r,a) with the following properties :

(1) both n and a end at the point (j,n-j)

(ii) ,r begins with a unit vertical step and a with a horizontal

(iii) n and a do not meet between the origin and their common endpoint .
n

The elements of L = jU1 Ln,j are polygons with circumference 2n, and it is well known

that ILn I = n( nn 2), n?2 ; IL1 1 = 0 .

We define now the height d(,r,a) of a path-pair (n,o) to be the maximal length of a

"diagonal" parallel to y=-x between two lattice points on the path-pair, e .g .

ML MEMML
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has d(n,a) = 2 .

Let Dh (z) denote the generating function of path-pairs (n,a) with d(n,a) <_ h .

LEMMA 7 . Dh (z) = P 2h(z)

	

z

Proof . We use the bijection between Ln and "Catalan" words in {0,1] described in

[59 : Represent a path-pair (,r,a) E Ln as a sequence of pairs of steps : let v be a

vertical step and h a horizontal step . The pair (n,a) with n = a1 . . .a n , a = b1 . . .b n

where each a i and b i is a v or h, is represented as the sequence of step-pairs (a l ,bl )

. . . (an ,bn ) . To encode the sequence of step-pairs as a Catalan word the following

translation is used :

(v,h) -r 00

	

(VV) -> 10

(h,v) -• 11

	

(h,h) -> 01

Omitting one "0" at the beginning and one "1" at the end a Catalan word is derived .

[For example : . The path-pair (n,a) from above is represented by the sequence

(v,h),(h,h),(v,v),(v,h),(h,v),(h,h),(h,v)

and encoded as the word 001100011011 .]

The Catalan word is now represented in the well known way as a planted plane tree

t(ir,a) of size n .

[In the example

We study now the influence of a step-pair (a i ,bi ) of the path-pair (n,a) on the height

of the corresponding nodes of the planted plane tree t(n,a) :

If we had arrived at a node of height k before attaching the part of the tree corr-

esponding to (a i ,bi ) the next two nodes will have heights

k-l,k

	

if (a i ,b i ) = (v,v) » 10

k+1,k+2 if (a i ,b i ) = (v,h) » 00

k-l,k-2 if (ai ,b i ) = (h,v) » 11

k+1,k

	

if (ai ,bi ) = (h,h) » 01

On the other hand the "local" diagonal distance 1 between the path-pairs develops as .

follows :

1 if (ai ,b i ) = (v,v)--- 10

1+1 if (ai ,b i ) = (v,h)-- 00

1-1 if (a i ,b i ) = (h,v) » 11

1

	

if (a i ,b i ) = (h,h)--- 01

So it is an easy consequence that the set of all path-pairs (n,a) with d(ir,a) 5 h

corresponds to the . set of trees t of size n with height of t equal to 2h-1 or 2h . Thus

we have Dh - Dh-1 = P2h

	

P2h-2' h >_ 1, with DO (z) = 0 . Summing up we get

Dh (z) = P2h (z) - PO (z) = P 2h (z) - z . o
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n

and 1,3,2,1 is also the sequence of heights of the leaves of the tree
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