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On the Recursion Depth of Special Tree
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The performance of several tree traversal algorithms may be described in terms of

various notions of height . Some results on the statistics of these parameters are
obtained by means of generating function techniques .
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1 . INTRODUCTION

In this paper we are concerned with the analysis of special recursive
algorithms for traversing the nodes of a planted plane tree (ordered tree ;
planar tree) . Some by now classical results in this area are due to (de
Bruijn, Knuth, and Rice, 1972 ; Knuth, 1973 ; Flajolet, 1981 ; Flajolet and
Odlyzko, 1982 ; Flajolet, Raoult, and Vuillemin, 1979 ; Kemp, 1979) and
others and are summarized in the next few lines :

The most important tree structure in computer science is the binary tree .
The family , of binary trees fulfills the symbolic equation

expressing the fact that a tree in ?2 may be either the empty tree El or a tree
consisting of a root o followed by a left and a right subtree being elements
of I again. The inorder traversal (Knuth, 1973) is the following recursive
principle :

Traverse the left subtree
Visit the root
Traverse the right subtree

The most straigthforward implementation uses an auxiliary stack to keep
necessary nodes of the tree. The analysis of the expected time of the visit

* A preliminary version of this work has been presented at ICALP '84 and published in the
"Proceedings" Lecture Notes in Computer Science Vol . 172, Springer-Verlag, 1984 .
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16 KIRSCHENHOFER AND PRODINGER

procedure is clearly linear in the size of the input tree . To evaluate recur-
sion depth means to determine the average stack height as a function of the
size (i .e ., the number of internal nodes O) of the tree. The recursion depth
or height h of the binary tree is recursively determined as .follows .

h(o)=0

and

h

	

= 1 +max{h(t,), h(t,) } .

We remark that h(t) is the number of edges in the longest chain connecting
the root of t with a leaf (external node 7) .

In (Flajolet and Odlyzko, 1982) the average value h„ of h(t) in the family
.4n of binary trees of size n is shown to be

h„ 2 nn.

The recursive visit procedure can be optimized in the case of binary trees
by eliminating endrecursion : the resulting iterative algorithm at each stage
keeps a list of right subtrees that still remain to be explored . The storage
complexity of this optimized algorithm is easily seen to correspond to the
so-called left-sided height h * defined by

h* (1112 )

h*(o)=0,

=max{1 +h*(t,), h*(t 2 )} .

Recalling that the rotation correspondence (Knuth, 1973, 2 .3 .2) transforms
a binary tree of n - 1 internal (binary) nodes into a planted plane tree with
n nodes, the average storage complexity of the optimized algorithm follows
immediately by a result of (de Bruijn, Knuth, and Rice, 1972) about the
average height of planted plane trees :

h,* - \/nn,

where the index n again refers to the size of the trees .
It was already proposed in Knuth's book to consider this kind of

question for other families of trees . Dealing with the family :? of planted
plane trees defined by

C
GP= c'+ +

	

\ +



there are several meaningful analogs of the left-sided height of binary trees :

(1) The "u-height"

u( (D )=0;

(3)

w

V

\ t I
. . .

The "w-height"
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t

u (A) =max{1 +u(t1), . . ., 1+u(tr u(tr )},

	

for r/2.
t 1 . . . t r

(2) The "v-height"

v(O)=0 ;

=max{r-i+v(t ;)j 1 < i< t

= 1 + w(t) ;

The asymmetric heights defined above can be interpreted as follows : u
counts the maximal number of edges not being a rightmost successor of a
node in a chain connecting the root with a leaf. w counts the maximal
number of edges which are leftmost successors of a node in a chain con-
necting the root with a leaf . For example, we have for the tree t depicted in
Fig. 1 the values u(t) = 2, v(t) = 4, and w(t) = 3 .
A short reflection tells us that u determines the recursion depth of the

optimized tree traversal algorithm. (The non-optimized algorithm

FIGURE 1

} •I

= max{ 1 + w(t 1 ), w(t,), . . ., w(t r )},

	

for r, 2.
. . . tr
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corresponds to the treatment of (de Bruijn, Knuth, and Rice, 1972) .) The
interpretation of v is a bit more complex :

Recall 'that a binary tree can be used to represent arithmetic expressions ;
a simple strategy of the evaluation is "from right to left", i.e ., to evaluate

p
we evaluate 1 2 , use one register to keep that value, evaluate t, , and

1,

	

12

then perform "op ." It is clear that the maximal number of registers during
the evaluation of a binary tree is exactly h* .

Planted plane trees are well suited to encode arithmetic expressions
where k-ary operations may occur for any k . The same strategy as in the

case of binary trees leads to v (evaluating
/01\

from right to left during
t ) • • • t ,

the consideration of t, already r - i registers are used to keep intermediate
values) .

The interest in w originates from another source; however, since this
parameter fits well into the concept of asymmetric heights we have have
decided to include it into our discussion .

In any instance we are interested in the average value u,,, v,,, and w„ of
the "height" u, v, and w of the trees in 9,,, i .e ., the trees of size n in 9. Our
main results are :

THEOREM 1 .1 . (a) u, _ 2117[n - 1 + G( n 1 i 2 )

(b) v,, 7in- +C(n -1 / 2 )

(c) 1i =

	

7rn+CO(n l ;a+ "), for all q >0 .

The method to achieve these results may be described in short as follows :
We start by defining appropriate generating functions refering to trees of a
specified height . In cases (a) and (b) it is possible to relate the generating
functions in question to similar ones occurring in the analysis of (de Bruijn,
Knuth, and Rice, 1972) . Since we know more or less explicit expressions
for these quantities, it is possible to study the analytic behavior, in par-
ticular, the local behavior near the singularities . On the contrary, it seems
to be impossible to find similar pseudoexplicit formulae in case (c) .
however, the analytic behavior of an appropriate generating function can
also be found by a more delicate approach .

In all cases the final step is to translate this "local information" on a
generating function into the asymptotic behavior of its coefficients by
means of a "translation lemma" due to (Flajolet and Odlyzko, 1982) .

The paper is concluded by a section applying some of the methods and
results outlined above to a similar but slightly different topic concerning
pairs of lattice paths (or "animals") .



as well as

,v, . . '	 ,i ; ., , , t
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2 . THE U-HEIGHT

Let P,,(-) (resp . U,( :)) be the generating functions of trees
ordinary height (resp . asymmetric "height" u) < h and

v( ,:) =
l- -1jl-4.:

as the generating function of all trees in

	

.
In order to get the generating functions of "heights" of trees of equal size

we observe that

h(P,,(z) - P11 1(z)) = I (y( :) - Ph(z))
hit

	

h>_0

I h(Uh(z) - Uh-1(--)) = )7, (y(--) - Uh(=)) •
h>_1

	

h->0

PO(-') = =' ;
Ph(=)-1-Ph-1(Z)

U0(z) =
z

1-z

x
where _

(1 +x)

it

in .~P with

(2)

(J)

Considering the defining symbolic equation for the family 9 in Section 1,
the recursion

(4)

is obtained ; compare (de Bruijn, Knuth, and Rice, 1972) . In the same
paper it is shown that

x

	

1 -xh+1
Ph(_)

1 + x 1 - xh +-' (5)

In the following proposition we exhibit a connection between the functions
U,, and P,,

PROPOSITION 2 .1 . Uh (z) = P,h + 1(z ) •
Proof 1 (analytic argument). We have

In order to get a recurrence relation for Uh (z) we observe that the follow-
ing symbolic equations hold for the families Vh of trees t in 9 with u(t) <, h :

0

+

Vh Vh - 1 l1 'h - 1 Vh - 1 'h
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zUh(z)
UhW 7 +

1 - Uh - l W '

z

Uh(`)

	

1

	

1 - Uh-1(Z)

From the last expression, the lemma follows inductively by a comparison
with (4) .

Proof 2 (combinatorial argument) . In this proof we establish a bijec-
tion co between the family O&h of trees t in .9 with u(t) < Ii and the family
9,,, + 1 of trees t with ordinary height ( 2h + 1 in the following way :

O 1

2

1

	

2

O n

Then, recursively, for t E Qt,, with subtrees i s e CWh - 1

1

(p(1 1 1)

	

cP(t2„)

t

n-1

(P(tti, )

	

(P



The idea of the construction of (p is to bring (recursively) the rightmost
successors to the same level as their predecessors . An inverse of (p is
obtained by reversing the recursive process in the definition of (p . Now it is
easy to prove by induction that cp maps

	

onto

	

, .

We are now ready to establish the local expansion of the generating
fu nction Eh , 0 (y - U,,) (compare (3)) about its singularity closest to the
origin :

PROPOSITION 2.2 . With µ( .:) = 1 - 4_ and some constants K,, K, we have
in a neighborhood { E C: 0 < ~ z - a1 < b, - - -L 0 R + 1 of 4 :

(y - Uh)= -g log ,u+KI+ ;,IC112+K,µ+
h?0

Proof. By Proposition 2.1,

I (y - Uh)=

	

(y - P2h+1)
h30

	

h,0

and by substitution from (5)

7	
X

	

X 1 - x2h+2

h>_0 1 +X 1 +X 1 -X2h+3

X

	

1-X

	

X2h+1

l+x + l+x h , 0 1-X 2h +l*

The last series may be rewritten as

~h + 1x -

h,0 1 - X2h + 1 d1(k) xk,
k~I

where d 1 (k) denotes the number of all odd divisors of k. Denoting by d,(k)
(resp. d(k)) the number of all even (resp . all) divisors of k we have

d1 (k) = d(k) - d,(k)

and

d,(2k) = d(k),

	

d,(2k + 1) = 0,

so that

X 2h+ I

2h + 1 = E d(k)

	

Y,xk -

	

d(k) x221x
h,0 1 -x

	

k->I

	

k->I
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Thus we have

x

	

1 -x

	

1 -x`'Y ( v - Uh ) _ -	+	 Z d(k) xk -	2 I d(k) x 2kk
h>0

	

1 +x I +x k>]

	

(1 +x) k>I

It is shown in (Prodinger, 1984) that

1	
-x

I d(k) x k = - log µ+Ki+ 1 µ''2+K'2µ+
. . . .

	

(6)
l+x k , l

	

4

	

4

Since x2 = /1(1 -2-- ))` = 4µ + (9(1.1. 2 ) it follows that

	l-~

	

d(k) x = - 1 logµ+K~ +lµ 1 / 2 +KZp+
(1 +x ) 2 k> ~

	

8

	

4

Finally,
x

1+x=y(`)=(1-µl%2)/2 .

Combining these local expansions the proposition is established .

In order to "translate" the local behavior of the generating function in
question into the asymptotic behavior of its coefficients we use the follow-
ing result from (Flajolet and Odlyzko, 1982) :

LEMMA 2.3 . Let F(z) be analytic in the domain -- :At, 1-1<6,
J Arg(l - z )1 < 8, where 6 > 1 and 7z/2 < 8 <7r . Assuming that inside the inter-
section of a neighborhood of 1 with this domain F(z) allows an. expansion :

r
F(Z) =A •log(l-z)+K+

	

a,(1-z)",+U(1-z),
;- 1

where A, K, a ;, v; are constants, 0 < v, < v, < . . . < v, < 1, the coefficients F„
of the expansion F(z) 0 F,, -" have the following asymptotic behavior
for11- OC :

,4

	

'

	

a;

	

1

	

1r.= - 11 + r_ I T(-1 , ) 1? , ;+, +

	

n-') .

this lemma to the local expansion of Proposition 2 .2 we find

LEMMA 2.4 .

l
(y - U,,)=

	

z"4" 8n -h'0

	

">_0

I 1
W



Dividing by

	

which is well known to be the Catalan number

We arrive at

THEOREM 2 .5 . The average value of the asymmetric height u(t) 0j' an
n-node planted plane tree t is given b y

~--
; nas„= ~%n- I +C(n-I 2 ) .

3 . THE V-HEIGHT

In this section we perform study, analogous to that in Section 2, for the
asymmetric "height" v . Let Vh (c) be the generating function of trees in J-P
with height ,< h . The connection between Vh and P,, is as follows :

PROPOSITION 3 .1 . Vh(z) = Ph + I (:)-

Proof 1 (analytic argument) . We start by observing the following sym-
bolic equation

~_ .JIll :v 111 . 1 ,
	

) A
	

I nI: : . ;vi tJkiKI i II vA 3

-4„n -3, _ / I +C i ,
n

	

`

	

n

O

	

0
=0+ + /\ + • • • +

This can be translated into the system of equations

VO =
1-=

ZVO =

	

and

	

Vh -
1

	

1 - Vh-I

V,,=-+-Vh(l+Vh-I+Vh-IVh-2+ . . .+Vh-1 . .
.VO),

	

hil .

From this it is an easy induction to show that

h> 1 .

-J

I

Since VO = p l , a comparison with (4) finishes the proof .
Proof 2 (combinatorial argument) . We establish a bijection

-A+ I in the following way : In the first step we map a tree t with n nodes and
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0

k k

0,

FIGURE 2

v(t) < h to a binary tree i' (t) with n - 1 nodes and h * ( . i' (t)) < h . For this
purpose we use an auxiliary mapping 0" which is defined recursively in
Fig. 2 .
Note that in fact 0' is a version of the rotation correspondence

(Knuth, 1973) between binary trees and planted plane trees .
To get 0 we compose 0' with the usual rotation correspondence between

binary trees with h*-height <h and n - 1 nodes and planted plane trees
with ordinary height < Il + I and n nodes .

THEOREM 3.2 . The average value of the asymmetric height v(t) of an
n-node planted plane tree t is given bly

Proof The result is an immediate consequence of Proposition 3 .1 and
the corresponding result (de Bruijn, Knuth, and Rice, 1972) for the
ordinary height of planted plane trees :

/I,* =

	

7Li1 - 5 + 0(n - ~'
2

) . ,



from which

fh-y - Wh = y-= y(l y)(y-fh-
l - y+fh

or

fh(l- y +fh)= y 2(l - y)+y'f,, - y2 (l-y)+y(i-y)fh - I
Thus we get

fh+fh(l - y-y')-y(l -y)fh-I =0.

i\ta,~-+~ilIV .~ ",A 1 tl 1i1 1 i\L1 : ; LVt)IVI 1I`l1VIJ

y=_+ y -

4. THE W-HEIGHT

This section is devoted to the proof of part (c) of our main theorem l . l .
While in the proofs of (a) and (b) our method was to establish an explicit
connection with de Bruijn, Knith, and Rice's result for the ordinary height
of planted plane trees, another approach is necessary to achieve (c) . The
more function-theoretic approach has been stimulated by the pioneering
treatment of the average height of binary trees in (Fl ajolet and Odlyzko,
1982). We start with the following lemma .

LEMMA 4.1 . Let Wh (z) be the generating, function of trees t in

	

with
w(t)<h. With e=/I =1/µ and fh(z)=y(=)- Wh(z) :

fh+(E+=)fh-=fh_1 = 0.

Proof. We have the system of symbolic equations

=0

and

0
IVO =0+

	

+

	

+

	

+ . . .
-I _)V ~sh_I

whence

and

	

Wh=z+zWh-I,

	

h, 1 .l-Wh

Now we use

(resp. z = y(l - y)),
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The final result is obtained by observing that

y= (1 - E)/2

and therefore

E+z=1-2y+y(1-);)=1-y-y2. /

In (Flajolet and Odlyzko, 1982) a function system (eh )fulfilling the
recursion

eh+'=(1-E)e,,(1-eh),

	

eo= z

is studied in detail . At the first glance this does not seem to have any
similarity with the kind of information offered on our functions f, by
Lemma 4.1 . Nevertheless a well-suited rescription will allow us to proceed
in a way similar to that in the paper cited above :

LEMMA 4.2 . With Ch = f,/(E + z) we have :

Ch- I

	

+
=

	

ah(1+ah),

	

h>,1 .

Proof. Immediate from Lemma 4 .1 and the definition of a,, . /

In the next step we apply a trick due to (de Bruijn, 1958, p . 157) to get
the. following relation .

LEMMA 4.3 . With T,, = a, ' (z/(E + z))~',

C ;-' '
=

- -

Proof Taking inverses in Lemma 4 .2 we obtain

a I (1 +
E+_

a
a -'

	

+
E+_ '

	

E+z E+z 1 +Q;

Multiplying this equation by (=/(E + :)) I -' we get

Summing up yields the announced formula . I



The last result has a reasonable similarity with Lemma 5 of (Flajolet and
Odlyzko, 1982), which is a corresponding result for the functions e,, cited
above. For this reason the further analysis of the function series Y,, ./ ;, can
be carried out close to the lines of Flajolet and Odlyzko's paper, so that we
confine ourselves to point out the key steps :

First we observe that the relation of Lemma 4 .3 suggests

to get

e - h"

L(= ) = Ee
u

It , I 1 - e

,:Where a is close to 0 and IArg of is close to 7r/4. It is shown in (Flajolet and>.Odlyzko, 1982) by comparing the series with an appropriate integral that

e - hu

-hu = -log o +5+ c(1u 1 )
1 -e

k- I\ .)IL) .\ Ili'.i' I I - I k :r
	

i ;<i;I : ;\i, .,1) <I I !-itVIS

E(E+=)
L(= ) _

lr > I

1
4

< 0C, Arc,

	

- 171

g ~r 4

\E+_

as a good approximation of

	

I f, . In fact the difference

D(=)=

	

1.,(=)-L(=)

	

(7)
h,0

allows the following estimation (compare the proof of Lemma 9 in (Flajolet
and Odlyzko, 1982) ) :

LEMMA 4.4 . For = in a neighborhood of 4, with

D(=)=D(4)+C",(II-4 X 1 /4- n)

	

for anyr~>0.

It remains to find the local behaviour of L(=) near 4 .

LEMMA 4.5 . For = in a neighborhood of 4 as in Lemma 4.4,

L(Z) = -4logE+KI +C(1-4z).

Proof. We substitute

= e -u

E+_
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with some constant 6. Since u = 4E + U(E 2 ) and Ee"/u = a + (9(E) we get the
desired result .

Combining the two previous lemmas we obtain

LEMMA 4.6 . For z in a neighborhood of a as in Lemma 4.4 and
p = E2 = 1 - 4z we have

(y(z)-W~,(=))_ -$logµ+K+(9 ( 1 l-4z1'/4_ )
h>0

for any r > 0 .

Now we apply the "translation lemma" 2.3 to arrive at our desired result :

THEOREM 4.7 . The average value of the asymmetric height w(t) of an
n-node planted plane tree t is given by

77 = 2 7In + (9(n' 14 + P7 )

	

for any i > 0 .

Remark. To illustrate the power of this method we mention in passing
a similar problem that can be treated along the lines of this section :

Let h k (t) denote the maximal number of nodes of outdegree k in a chain
connecting the root with a leaf. Furthermore let Hk , h (z) be the generating
function of the trees t with hk (t) <- h . Then we have

Hk,/, = 1 _ H
k h

- zHk + :Hkk.h

	

kh-I •

With e,;,,,(_ ) = y(z) -

	

)we can expand ek ,h(z) in terms of ek.h _, (z) and
apply de Bruijn's trick to obtain

k
ek .h(z} _ - )k + 3 log p + Kk +

	

4z1
h>0

	

-

As a consequence we get that the average value h*,,, of the "height" h k (t) for
trees t of size n is asymptotically equivalent to

It is interesting to note that

k

i /1 I.,,

	

h„
k>I

q>0.

(8)

(9)



(ii )

:ii
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5 . AN APPLICATION TO PAIRS OF LATTICE PATHS

A slightly different but related topic is now discussed : Following (Polya,

1969) (resp. Furlinger and Hofbauer, 1985), we consider pairs of lattice

paths in the plane, each path starting at the origin and consisting of unit
horizontal and vertical steps in the positive direction .

Let

	

be the set of such path-pairs (ir, a) with the following properties :

(1) both rc and a end at the point (j, n - j)
n begins with a unit vertical step and a with a horizontal step

(iii) it and a do not meet between the origin and their common
endpoint .

The elements of Y,, = U= I Y, •j

are polygons with circumference 2n, and it

is well known that

1 2n-2~
I~"I =n n- 1

Now we define the height d(7r, a) of a path-pair (7r, a) to be the maximal

length of a "diagonal" parallel to y = -x between two lattice points on the

path-pair (e.g ., see Fig. 3) has d(n, a) = 2 . Let Dh(Z) denote the generating

function of path-pairs (ir, a) with d(ir, a) < h .

PROPOSITION 5.1 . Dh(z) = P,h(Z) - z .

Proof: We use the bijection between 2, and "Catalan" words in {0, 1 }

described in (Furlinger and Hofbauer, 1985) : Represent a path-pair

(n, a) E P„ as a sequence of pairs of steps : let v be a vertical step and h a
horizontal step . The pair (ir, a) with n = a I . . . a, a = b 1 • - • b„ where each a,
and h ; is a v or h, is represented as the sequence of step-pairs
(al, h1) . . . (a,,, b„). To encode the sequence of step-pairs as a Catalan word
the following translation is used :

(v, h)

	

00

	

(v, v) -* 10

(h,v)-*11

n>,2 ;

	

14 =0 .

ITLM

MML

F IGURE 3

(h, h)

	

O1 .
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FIGURE 4

Omitting one "0" at the beginning and one "1" at the end, a Catalan word
is derived. (For example : The path-pair (n, a) from above is represented by
the sequence

(v, h), (h, h), (v, v), (v, h), (h, v), (h, h), (h, v )

as encoded as the word 001100011011 .)
The Catalan word is represented in the well-known way as a planted

plane tree t(n, a) of size n. (See Fig. 4 .)
Now we study the influence of a step-pair (a ;, b ;) of the path-pair (n, a

on the height of the corresponding nodes of the planted plane tree t(n, a) :
If we had arrived at a node of height k before attaching the part of the tree
corresponding to (a;, b,) the next two nodes will have heights

k - l, k if (a ;, b ;) = (v, v) H 10

k + 1, k + 2 if (a ;, b ;) = (v, h) - 00

k-1,k-2 if (a ;,b ;)_(h,v) •-+11

k + 1, k if (a ;, b ;) = (h, h) H 01 .

On the other hand, the "local" diagonal distance I between the path-pairs
develops as follows :

/ if (a ;, b,)

	

(h, h) H 01 .

So it is an easy consequence that the set of all path-pairs (n, a) with
d(n. a) = h corresponds to the set of trees i of size n with height t equal tO

FIGURI . 5

1+

I if (a ;, b ;) = (v, v) H 0

1 if (a ;, b 1 ) = ( v, h) H 00

1- 1 if (a ;, b ;) = (h, v) E--* 11



FIGURE 6

2/1 - 1 or 2h . Thus we have D,, - D,, _ I = P,,, - P,h _ h _ 1, with D o ( :) = 0 .

Summing up we get

Dh(=) = P2,,(=) - Po (=) = Pr(::) - _ • I

PROPOSITION 5 .2 . The average value ofd(rr, o) for path-pairs in Y is

h -u -1

	

~+C7(n-1 ;2)

Proof• Let 1(_7)=Y(_7)-= denote the generating function of all path-
pairs. Then, regarding Proposition 5 .1 and 2 .1,

7, ( 1- Dh) = Z (y - P2h) = Z (y-P,,)- I (y- Uh)
h>0

	

h>0

	

h>0

	

h>0

from which the result is immediate . I

In (Furlinger and Hofbauer, 1985) there is another interesting bijection
between path-pairs and planted plane trees : Let (TL, a) E Y,,,,, be a path-pair
with steps n = a 1 . . . a,,, a = b 1 . . . b,, (a;, b ; E { v, h 1) . Now we decompose Tr
(resp . a) in the following way : For

Tr = vslh v 52h . . . v5%h,

	

s, >, 0,

u = hv`I hv`

	

hv`/,

	

t, >, 0,

we consider the Catalan word

OSI t rl+10S,+1 In+I • • • It' _ I+1 Os;+I

1-3

'Which again corresponds to a planted plane tree as usual . (In our example
from above (7r, a) is encoded as 010001101101, see Fig . 5) .

It is easily seen that the height of the ith leaf from the left of the tree con-
lttueted as indicated equals the area of the ith vertical rectangle of width 1

FIGURE 7

1 .1 .,1 .

	

\ •, 'J .,1\I 1 I I .VI,)

n

1

_I I
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from the left between it and a. (In our example the sequence of areas is
1, 3, 2, 1, corresponding to Fig . 6, and 1, 3, 2, 1 is also the sequence of
heights of the leaves of the tree in Fig . 7 .
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