
Hindawi Publishing Corporation
International Journal of Combinatorics
Volume 2010, Article ID 153621, 13 pages
doi:10.1155/2010/153621

Research Article
On a Reciprocity Law for
Finite Multiple Zeta Values

Markus Kuba1 and Helmut Prodinger2

1 Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien,
Wiedner Hauptstr, 8-10/104, 1040 Wien, Austria

2 Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

Correspondence should be addressed to Markus Kuba, markus.kuba@chello.at

Received 11 October 2009; Accepted 14 January 2010

Academic Editor: Alois Panholzer

Copyright q 2010 M. Kuba and H. Prodinger. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

It was shown by Kirschenhofer and Prodinger (1998) and Kuba et al. (2008) that harmonic
numbers satisfy certain reciprocity relations, which are in particular useful for the analysis of
the quickselect algorithm. The aim of this work is to show that a reciprocity relation from
Kirschenhofer and Prodinger (1998) and Kuba et al. (2008) can be generalized to finite variants of
multiple zeta values, involving a finite variant of the shuffle identity for multiple zeta values. We
present the generalized reciprocity relation and furthermore a combinatorial proof of the shuffle
identity based on partial fraction decomposition. We also present an extension of the reciprocity
relation to weighted sums.

1. Introduction

Let Hn =
∑n

k=1 1/k denote the nth harmonic number and H
(s)
n =

∑n
k=1 1/k

s the nth harmonic
number of order s, with n, s ∈ N and Hn = H

(1)
n . Kirschenhofer and Prodinger [1] analyzed

the variance of the number of comparisons of the famous QUICKSELECT algorithm, also
known as FIND [2] and derived a reciprocity relation for (first-order) harmonic numbers.
Subsequently, the reciprocity relation of [1]was generalized [3], where the following identity
was derived:

j∑

k=1

H
(a)
N−k
kb

+
N+1−j∑

k=1

H
(b)
N−k
ka

= − 1
jb
(
N + 1 − j

)a +H
(b)
j H

(a)
N+1−j + R

(a,b)
N , (1.1)
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where R
(a,b)
N =

∑N
k=1 H

(a)
N−k/k

b, which can be evaluated into a finite analogue of the so-called
Euler identity for ζ(a)ζ(b) stated below,

R
(a,b)
N =

a∑

i=1

(
i + b − 2

b − 1

)

ζN(i + b − 1, a + 1 − i) +
b∑

i=1

(
i + a − 2

a − 1

)

ζN(i + a − 1, b + 1 − i), (1.2)

where the multiple zeta values [4–9], and its finite counterpart are defined as follows:

ζ(a) = ζ(a1, . . . , ar) :=
∑

n1>n2>···>nr≥1

1
na1
1 na2

2 · · ·nar
r

,

ζN(a) = ζN(a1, . . . , ar) :=
∑

N≥n1>n2>···>nr≥1

1
na1
1 na2

2 · · ·nar
r

.

(1.3)

Note that ζN(a) = H
(a)
N . Finite multiple zeta values are also called truncated multiple zeta

values. They are also of great importance in particle physics, see for example the works [10–
12], and closely related to so-called harmonics sums. Let w =

∑r
i=1 ai denote the weight

and d = r the depth of (finite) multiple zeta values. The aim of this note is to derive a
generalization of the reciprocity relation (1.1), stated below in Theorem 2.1, by considering
the more general sums

j∑

k=1

ζk−1(b2, . . . , bs)ζN−k(a1, . . . , ar)
kb1

+
N+1−j∑

k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)
ka1

, (1.4)

instead of the previously considered sums
∑j

k=1 H
(a)
N−k/k

b and
∑N+1−j

k=1 H
(b)
N−k/k

a. The
generalization involves a finite variant of the shuffle identity for multiple zeta values; see,
for example, Hoffman [13] for a general algebraic framework for shuffle products. We will
give an elementary proof of the shuffle identity using only partial fraction decomposition
and the combinatorial properties of the shuffle product in Sections 3.1 and 3.2. Moreover, we
discuss the close relation between this finite variant of the shuffle identity and the shuffle
identity for generalized polylogarithm functions; it will turn out that the finite variant of the
shuffle identity is equivalent to the shuffle identity for generalized polylogarithm functions.

To simplify the presentation of this work, we will frequently use the shorthand
notations a = (a1, . . . , ar), a2 = (a2, . . . , ar), and b = (b1, . . . , bs), b2 = (b2, . . . , bs), respectively,
with r, s ∈ N and ai, bk ∈ N for 1 ≤ i ≤ r and 1 ≤ k ≤ s.

2. Results

We will state the main theorem and two corollaries below, and subsequently discuss their
proofs and the precise definition of the shuffle relation for multiple zeta values.
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Theorem 2.1. The finite multiple zeta values ζN(a) = ζN(a1, . . . , ar), ζN(b) = ζN(b1, . . . , bs)
satisfy the following reciprocity relation.

j∑

k=1

ζk−1(b2, . . . , bs)ζN−k(a1, . . . , ar)
kb1

+
N+1−j∑

k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)
ka1

= ζN+1−j(a)ζj(b) −
ζj−1(b2)ζN−j(a2)

jb1
(
N + 1 − j

)a1 + RN(a;b).

(2.1)

The quantity RN(a;b) =
∑N

k=1 ζN−k(b)ζk−1(a2, . . . , ar)/ka1 = RN(b; a) can be written as a sum of
finite multiple zeta values, all of them having weightw =

∑r
i=1 ar +

∑s
i=1 bi and depth d = r + s.

Remark 2.2. The quantity RN(a;b) satisfies a shuffle identity resembling the ordinary shuffle
identity for multiple zeta values ζ(a)ζ(b) = ζ(a��b); see Sections 3.1, 3.2 and Proposition 3.4
for details.

Corollary 2.3. We obtain the complementary identity

j−1∑

k=1

ζk(b)ζN−k−1(a2)
(N − k)a1

+
N−j∑

k=1

ζk(a)ζN−k−1(b2)

(N − k)b1

=
ζj−1(b)ζN−j(a2)
(
N + 1 − j

)a1 +
ζN−j(a)ζj−1(b2)

jb1
− ζN+1−j(a)ζj(b) +

ζj−1(b2)ζn−j(a2)

jb1
(
N + 1 − j

)a1 + RN(a;b).

(2.2)

Next we state an immediate asymptotic implication of the previous result.

Corollary 2.4. ForN = 2n+1, j = n+1, with a1, b1 ∈ N\{1} and n → ∞, we obtain the following
result:

lim
n→∞

(
j∑

k=1

ζk−1(b2)ζN−k(a)
kb1

+
N+1−j∑

k=1

ζk−1(a2)ζN−k(b)
ka1

)

= 2ζ(a)ζ(b). (2.3)

3. The Proof of the Reciprocity Relation

In order to prove Theorem 2.1, we proceed as follows (using the beforehand introduced
shorthand notations).

j∑

k=1

ζk−1(b2)ζN−k(a)
kb1

=
j∑

k=1

ζk−1(b2)
kb1

⎛

⎝ζN−j(a) +
N−k∑

�=N+1−j

ζ�−1(a2)
�a1

⎞

⎠

= ζN−j(a)ζj(b) +
j∑

k=1

ζk−1(b2)
kb1

N−k∑

�=N+1−j

ζ�−1(a2)
�a1

.

(3.1)
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After changing summations, we obtain

j∑

k=1

ζk−1(b2)ζN−k(a)
kb1

= ζN−j(a)ζj(b) +
N−1∑

�=N+1−j

ζ�−1(a2)
�a1

N−�∑

k=1

ζk−1(b2)
kb1

= ζN−j(a)ζj(b) +
N−1∑

�=N+1−j

ζ�−1(a2)ζN−�(b)
�a1

.

(3.2)

Using

ζN−j(a)ζj(b) +
ζN−j(a2)ζj−1(b)
(
N + 1 − j

)a1 = ζN−j(a)ζj(b) +
ζN−j(a2)

(
N + 1 − j

)a1

(

ζj(b) −
ζj−1(b2)

jb1

)

= ζN+1−j(a)ζj(b) −
ζN−j(a2)ζj−1(b2)
(
N + 1 − j

)a1jb1
,

(3.3)

and the fact that ζ0(b) = 0 gives the intermediate result

j∑

k=1

ζk−1(b2)ζN−k(a)
kb1

= ζN+1−j(a)ζj(b) −
ζN−j(a2)ζj−1(b2)
(
N + 1 − j

)a1jb1
+

N∑

�=N+2−j

ζ�−1(a2)ζN−�(b)
�a1

, (3.4)

Add the sum
∑N+1−j

k=1 ζk−1(a2)ζN−k(b)/ka1 to both sides of the equation above. This proves
the first part of Theorem 2.1 and

RN(a;b) =
N∑

k=1

ζN−k(b)ζk−1(a2, . . . , ar)
ka1

. (3.5)

For the evaluation of RN(a;b), we note that R0(a;b) = 0, and further

RN(a;b) =
N∑

k=1

(Rk(a;b) − Rk−1(a;b)). (3.6)

Since ζ0(b) = 0, we have

RN(a;b) − RN−1(a;b) =
N∑

k=1

ζN−k(b)ζk−1(a2, . . . , ar)
ka1

−
N−1∑

k=1

ζN−1−k(b)ζk−1(a2, . . . , ar)
ka1

=
N−1∑

k=1

(ζN−k(b) − ζN−1−k(b)ζk−1(a2, . . . , ar)
ka1

=
N−1∑

k=1

ζN−1−k(b2, . . . , bs)ζk−1(a2, . . . , ar)

(N − k)b1ka1
.

(3.7)
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Now we use the following partial fraction decomposition (This identity has been
rediscoveredmany times. For a fascinating historic account, see [14].) , which appears already
in [15],

1

ka(N − k)b
=

a∑

i=1

(
i+b−2
b−1

)

Ni+b−1ka+1−i +
b∑

i=1

(
i+a−2
a−1

)

Ni+a−1(N − k)b+1−i
, (3.8)

and obtain

N−1∑

k=1

ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

(N − k)b1ka1
=

a1∑

i=1

N−1∑

k=1

(
i+b1−2
b1−1

)
ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

Ni+b1−1ka1+1−i

+
b1∑

i=1

N−1∑

k=1

(
i+a1−2
a1−1

)
ζk−1(a2, . . . , ar)ζN−1−k(b2, . . . , bs)

Ni+a1−1(N − k)b1+1−i
.

(3.9)

Consequently, by summing up according to (3.6), we get the following recurrence relation for
RN(a;b):

RN(a;b) =
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Rn1−1(a1 + 1 − i, a2, . . . , ar ; b2, . . . , bs)

+
b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Rn1−1(a2, . . . , ar ; b1 + 1 − i, b2, . . . , bs).

(3.10)

This recurrence relation suggests that there exists an evaluation of RN(a;b) into sums of
finite multiple zeta values, all of them having weight w =

∑r
i=1 ar +

∑s
i=1 bi and depth

d = r + s. In order to specify this evaluation, we need to introduce the shuffle product
for words over a noncommutative alphabet and to study the arising shuffle algebra, and
its relation to (finite) multiple zeta values and RN(a;b). For a general algebraic framework
for the shuffle product, we refer the reader to the work of Hoffman [13]. We remark that
the recurrence relation above for RN(a;b) was already derived in the context of particle
physics [11, 12]. Furthermore, weighted extensions including alternating sign versions have
been treated there. An important algorithmic treatment of such sums is implemented in the
package Summer for the computer algebra system Form.

3.1. The Shuffle Algebra

Let A denote a finite noncommutative alphabet consisting of a set of letters. A word w on
the alphabet A consists of a sequence of letters from A. Let A∗ denote the set of all words
on the alphabet A. A polynomial on A over Q is a rational linear combination of words on
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A. The set of all such polynomials is denoted by Q〈A〉. Let the shuffle product of two words
w,v ∈ A∗, withw = x1 · · ·xn, v = xn+1 · · ·xn+m, xi ∈ A for 1 ≤ i ≤ n +m, be defined as follows:

w��v :=
∑

xσ(1)xσ(2) · · ·xσ(n+m), (3.11)

where the sum runs over all
(

n+m

n

)
permutations σ ∈ Sn+m which satisfy σ−1(j) < σ−1(k)

for all 1 ≤ j < k ≤ n and n + 1 ≤ j < k ≤ n + m. Note that the sum runs over all words of
length n +m, counting multiplicities, in which the relative orders of the letters x1, . . . , xn and
xn+1, . . . , xn+m are preserved. Equivalently, the shuffle product of two wordsw,v ∈ A∗ can be
defined in a recursive way:

∀w ∈ A∗, ε��w = w��ε = w,

∀x, y ∈ A, w,v ∈ A∗, xw��yv = x
(
w��yv) + y(xw��v).

(3.12)

The shuffle product extends to Q〈A〉 by linearity. Note that the set Q〈A〉, provided with the
shuffle product ��, becomes a commutative and associative algebra. We remark that the term
“shuffle” is used because such permutations arise in riffle shuffling a deck of n +m cards cut
into one pile of n cards and a second pile of m cards [7].

In the following, we will restrict ourselves to the non-commutative alphabet A =
{ω0, ω1} and the arising shuffle algebra (Q〈A〉,��). Hoang and Petitot [16] derived a shuffle
identity for words A = ωa−1

0 ω1, B = ωb−1
0 ω1, which is stated below.

Lemma 3.1. For a, b ∈ N, let A = ωa−1
0 ω1 and B = ωb−1

0 ω1 be words on the non-commutative
alphabetA = {ω0, ω1}.

A��B =
a−1∑

i=0

(
b − 1 + i

b − 1

)

ωb−1+i
0 ω1ω

a−1−i
0 ω1 +

b1−1∑

i=0

(
a − 1 + i

a − 1

)

ωa−1+i
0 ω1ω

b−1−i
0 ω1. (3.13)

We will use a slight extension of this identity, which easily follows from the recursive
definition of the shuffle product.

Lemma 3.2. For r, s ≥ 1 and ai, bj ∈ N, 1 ≤ i ≤ r, 1 ≤ j ≤ s, let A := ωa1−1
0 ω1 · · ·ωar−1

0 ω1 and
B := ωb1−1

0 ω1 · · ·ωbs−1
0 ω1 be words on the non-commutative alphabet A = {ω0, ω1}.

A��B =
a1∑

i=1

(
i + b1 − 2

b1 − 1

)

ωi+b1−2
0 ω1

(
A′

i��B2
)
+

b1∑

i=1

(
i + a1 − 2

a1 − 1

)

ωi+a1−2
0 ω1

(
A2��B′

i

)
, (3.14)

with A′
i := ωa1−i

0 ω1ω
a2−1
0 ω1 · · ·ωar−1

0 ω1, B′
i := ωb1−i

0 ω1ω
b2−1
0 ω1 · · ·ωbs−1

0 ω1 and further A2 :=
ωa2

0 ω1 · · ·ωar−1
0 ω1, B2 := ωb2−1

0 ω1 · · ·ωbs−1
0 ω1.

Note that the partial fraction decomposition (3.8) of 1/ka(N − k)b somewhat mimics
the shuffle identity for words A = ωa−1

0 ω1, B = ωb−1
0 ω1, derived by Hoang and Petitot [16].
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3.2. The Shuffle Algebra and Finite Multiple Zeta Values

Let a denote an arbitrary r-tuple of positive integers a = (a1, . . . , ar) with ai ∈ N for 1 ≤ i ≤ r
and r ≥ 1. To any a, we will associate a unique word A = A(a) over the non-commutative
alphabetA = {ω0, ω1} as follows:A = A(a) such thatA := ωa1−1

0 ω1ω
a2−1
0 ω1 · · ·ωar−1

0 ω1. LetA∗

denote the set of all words over the alphabet A. Let (ZN)N≥1 denote a family of linear maps
from the algebra Q〈A〉 to the rational numbers, ZN : Q〈A〉 → Q, mapping words over the
non-commutative alphabet A = {ω0, ω1} to finite multiple zeta values in the following way.
For words A := ωa1−1

0 ω1ω
a2−1
0 ω1 · · ·ωar−1

0 ω1 ∈ A∗, with r,N ≥ 1, we define

ZN(A) = ZN

(
ωa1−1

0 ω1ω
a2−1
0 ω1 · · ·ωar−1

0 ω1

)
= ζN(a1, . . . , ar) = ζN(a). (3.15)

Moreover, we additionally define Z0(A) = ζ0(a) = 0 for all A ∈ A∗, and ZN(ε) = 1 for all
N ≥ 1. The family of maps (ZN)N≥1 linearly extend to Q〈A〉. By the recursive definition of
the finite multiple zeta values, we can express the images of the maps ZN in a recursive way.
Let A := ωa1−1

0 ω1ω
a2−1
0 ω1 · · ·ωar−1

0 ω1 ∈ A∗, with r ≥ 1 and a1, . . . , ar ≥ 1.

ZN(A) = ζN(a) =
N∑

n1=1

1
na1
1

ζn1−1(a2, . . . , ar) =
N∑

n1=1

1
na1
1

Zn1−1
(
ωa2−1

0 ω1 · · ·ωar−1
0 ω1

)
. (3.16)

We need the following result.

Lemma 3.3. For r, s ≥ 1 and ai, bj ∈ N, 1 ≤ i ≤ r, 1 ≤ j ≤ s, let A := ωa1−1
0 ω1 · · ·ωar−1

0 ω1 and
B := ωb1−1

0 ω1 · · ·ωbs−1
0 ω1 be words on the non-commutative alphabet A = {ω0, ω1}. Then,

ZN(A��B) =
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Zn1−1
(
A′

i��B2
)
+

b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Zn1−1
(
A2��B′

i

)
. (3.17)

The depths d = r + s and the weights w =
∑r

i=1 ai +
∑s

k=1 bk of the arising finite multiple zeta values
are all the same.

Proof. By linearity of the maps ZN and Lemma 3.2, we get first

ZN(A��B) =
a1∑

i=1

(
i + b1 − 2

b1 − 1

)

ZN

(
ωi+b1−2

0 ω1
(
A′

i��B2
))

+
b1∑

i=1

(
i + a1 − 2

a1 − 1

)

ZN

(
ωi+a1−2

0 ω1
(
A2��B′

i

))
,

(3.18)

using the notations of Lemma 3.2 for A′
i, B

′
i, A2, B2. By definition of the shuffle product,

A′
i��B2 ∈ Q〈A〉 and A2��B′

i ∈ Q〈A〉 are rational linear combinations of words over A. Let
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{A′
i��B2} and {A2��B′

i} denote the sets of different words generated by the shuffles A′
i��B2

and A2��B′
i. Using the set notation, we write

A′
i��B2 =

∑

w∈{A′
i��B2}

qww, A2��B′
i =

∑

w∈{A2��B′
i}
qww, (3.19)

with qw ∈ Q and w ∈ A∗, which helps to obtain a simple presentation of the subsequent
calculations. We have

ZN(A��B) =
a1∑

i=1

(
i + b1 − 2

b1 − 1

)

ZN

⎛

⎝ωi+b1−2
0 ω1

∑

w∈{A′
i��B2}

qww

⎞

⎠

+
b1∑

i=1

(
i + a1 − 2

a1 − 1

)

ZN

⎛

⎝ωi+a1−2
0 ω1

∑

w∈{A2��B′
i}
qww

⎞

⎠.

(3.20)

Using the linearity of the maps ZN and the fact that we can recursively describe their images,
we get further

ZN(A��B) =
a1∑

i=1

(
i + b1 − 2

b1 − 1

)
∑

w∈{A′
i��B2}

qw
N∑

n1=1

1

ni+b1−1
1

Zn1−1(w)

+
b1∑

i=1

(
i + a1 − 2

a1 − 1

)
∑

w∈{A2��B′
i}
qw

N∑

n1=1

1

ni+a1−1
1

Zn1−1(w).

(3.21)

Interchanging the latter summations gives the stated result.

ZN(A��B) =
a1∑

i=1

(
i + b1 − 2

b1 − 1

)
N∑

n1=1

1

ni+b1−1
1

∑

w∈{A′
i��B2}

qwZn1−1(w)

+
b1∑

i=1

(
i + a1 − 2

a1 − 1

)
N∑

n1=1

1

ni+a1−1
1

∑

w∈{A2��B′
i}
qwZn1−1(w)

=
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Zn1−1
(
A′

i��B2
)
+

b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Zn1−1
(
A2��B′

i

)
.

(3.22)

It can easily be checked that the finite multiple zeta values all have the same depth and
weight.
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Now we are ready to provide the evaluation of RN(a;b).

Proposition 3.4. For arbitrary r, s ≥ 1, let a and b be given by a = (a1, . . . , ar) and b = (b1, . . . , bs),
with ai, bj ∈ N for 1 ≤ i ≤ r, 1 ≤ j ≤ s. Let A = A(a) and B = A(b) denote the words associated to a
and b by A := ωa1−1

0 ω1 · · ·ωar−1
0 ω1 and B := ωb1−1

0 ω1 · · ·ωbs−1
0 ω1. Then, for arbitraryN ≥ 1,

RN(a;b) = ZN(A��B). (3.23)

Proof. We use induction with respect to d = r + s, corresponding to the depths of the arising
finite multiple zeta values. The result clearly holds for depth d = 2; see identity (1.2), as
shown in [3]. Now assume that d ≥ 3. Using the recurrence relation (3.10) for RN(a;b), we
get

RN(a;b) =
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Rn1−1(a1 + 1 − i, a2, . . . , ar ; b2, . . . , bs)

+
b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Rn1−1(a2, . . . , ar ; b1 + 1 − i, b2, . . . , bs).

(3.24)

The induction hypothesis states that RN(a;b) = ZN(A��B) for arbitrary r, s ≥ 1 such that r +
s < d and arbitrary N ≥ 1. By the recurrence relation for RN(a;b), we can reduce RN(a;b) to
values of the typesRn1−1(a1+1 – i, a2, . . . , ar ; b2, . . . , bs) andRn1−1(a2, . . . , ar ; b1+1 – i, b2, . . . , bs),
which are of depth smaller than d = r + s. Hence, we get by the induction hypothesis

RN(a;b) =
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Zn1−1
(
A′

i��B2
)
+

b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Zn1−1
(
A2��B′

i

)
. (3.25)

By Lemma 3.3, using the notations for A′
i, B

′
i, A2, B2 of Lemma 3.2, we get

a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1

Zn1−1
(
A′

i��B2
)
+

b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1

Zn1−1
(
A2��B′

i

)
= ZN(A��B). (3.26)

Consequently,

RN(a;b) = ZN(A��B). (3.27)

This proves the stated result for RN(a;b) and the corresponding statement of Theorem 2.1.

Corollary 2.3 can easily be deduced by noting that the sum of the left hand sides of
Corollary 2.3 and Theorem 2.1 adds up to RN(a;b) plus the additional two extra terms. The
proof of Corollary 2.4 will be given in the next section, which consists of several remarks.
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4. Remarks on Polylogarithms and the Finite Shuffle Identity

For given a = (a1, . . . , ar) and b = (b1, . . . , bs), one may define the shuffle product ζN(a��b)
in terms of the images of the maps ZN using the words A = A(a) and B = A(b) associated to
a and b by A := ωa1−1

0 ω1 · · ·ωar−1
0 ω1 and B := ωb1−1

0 ω1 · · ·ωbs−1
0 ω1,

ζN(a��b) := ZN(A��B). (4.1)

It turns out that this definition coincides with the usual definition of the shuffle product for
multiple zeta values; for an excellent overview concerning the shuffle product for multiple
zeta values, we refer the reader to [5, 16, 17].

Let Lia(z) denote the (multiple) polylogarithm function with parameters a1, . . . , ar ,
defined by

Lia(z) = Lia1,...,ar (z) =
∑

n1>n2>···>nr≥1

zn1

na1
1 na2

2 · · ·nar
r

. (4.2)

The value RN(a;b) can be obtained by coefficient extraction in the following way:

RN(a;b) =
N∑

k=1

ζk−1(a2, . . . , ar)ζN−k(b1, . . . , bs)
ka1

=
[
zN
]Lia(z)Lib(z)

1 − z
. (4.3)

On the other hand, by the finite shuffle identity (3.23) for RN(a;b), one can show the
following representation:

RN(a;b) =
[
zN
]Lia��b(z)

1 − z
. (4.4)

Here the shuffle product for polylogarithm functions Lia��b(z) is defined in the usual way.
We do not want to go into the proof details concerning the equation above since we would
have to state and use the precise definition of the shuffle product for multiple zeta values and
polylogarithm functions; avoiding repetition, we skip the details and only refer the interested
reader to [17], and Theorem 5.1. We want to remark that the result of Proposition 3.4 for
RN(a;b) implies that the shuffle identity for polylogarithm functions, and consequently also
for multiple zeta values, can be developed entirely from finite sums using only basic partial
fraction decomposition and the combinatorics behind the shuffle product and the shuffle
algebra; see Hoffman [13] for an important discussion of the shuffle product. Note that
by evaluating at z = 1, the shuffle identity for polylogarithm functions implies the shuffle
identity for multiple zeta values. The identity above is well known; see for example the article
[5]. The shuffle identity for polylogarithm functions is due to the iterated Drinfeld integral
representation of polylogarithm functions and multiple zeta values due to Kontsevich [9].
As remarked in [5], the shuffle identity for polylogarithm functions can be deduced from the
fact that the product of two simplex integrals consists of a sum of simplex integrals over all
possible interlacings of the respective variables of integration.
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Finally, we turn to the proof of Corollary 2.4. ForN = 2n+ 1 and j = n+ 1 and n → ∞,
we have

lim
n→∞

ζj(a)ζN+1−j(b) = lim
n→∞

ζn+1(a)ζn+1(b) = ζ(a)ζ(b),

lim
n→∞

ζn(b2, . . . , bs)ζn(a2, . . . , ar)

(n + 1)a1+b1
= 0,

lim
n→∞

RN(a;b) = lim
n→∞

ζ2n+1(a��b) = ζ(a)ζ(b),

(4.5)

and the stated result follows.

5. The Reciprocity Relation for Weighted Multiple Zeta Values

Results similar to Theorem 2.1 and Corollary 2.4 can be obtained for products of weighted
finite multiple zeta values, ζN(a1, a2, . . . , ar ;σ1, . . . , σr), σi ∈ R \ {0} for 1 ≤ i ≤ r, defined as
follows:

ζN(a,σ) = ζN(a1, a2, . . . , ar ;σ1, . . . , σr) =
∑

N≥n1>n2>···>nr≥1

1
∏r

i=1n
ai
i σ

ni

i

. (5.1)

Of particular interest are the cases σi ∈ {±1} corresponding to a mixture of alternating
and nonalternating signs, which are of particular importance in particle physics. We only
state the result generalizing Theorem 2.1, with respect to the notations a2 = (a2, . . . , ar),
σ2 = (σ2, . . . , σr), and the corresponding notations for b2 and τ2, and leave the generalizations
of Corollaries 2.3 and 2.4 to the reader.

Theorem 5.1. The multiple zeta values ζN(a,σ) and ζN(b, τ) with weights σ and τ satisfy the
following reciprocity relation:

j∑

k=1

ζk−1(b2, τ2)ζN−k(a,σ)
kb1τk1

+
N+1−j∑

k=1

ζk−1(a2,σ2)ζN−k(b, τ)
ka1σk

1

= ζN+1−j(a,σ)ζj(b, τ) −
ζj−1(b2, τ2)ζN−j(a2,σ2)

τ
j

1j
b1σ

N+1−j
1

(
N + 1 − j

)a1
+ RN(a,σ;b, τ).

(5.2)

Here RN(a,σ;b, τ) =
∑N

k=1 ζN−k(b, τ)ζk−1(a2,σ2)/σk
1 k

a1 = RN(b, τ ; a,σ) satisfies an analogue of
the shuffle identity with respect to the weights σ and τ .

The proof of Theorem 2.1 can easily be adapted to the weighted case. Hence, we only
elaborate on the main new difficulty, namely, the evaluation of the quantity

RN(a,σ;b, τ) =
N∑

k=1

ζN−k(b, τ)ζk−1(a2;σ2)
σk
1 k

a1
. (5.3)
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Proceeding as before, that is, taking differences and using partial fraction decomposition, we
obtain the recurrence relation

RN(a,σ;b, τ) =
a1∑

i=1

N∑

n1=1

(
i+b1−2
b1−1

)

ni+b1−1
1 τn1

1

Rn1−1

(

a1 + 1 − i, a2,
τ1
σ1

,σ2;b2, τ2

)

+
b1∑

i=1

N∑

n1=1

(
i+a1−2
a1−1

)

ni+a1−1
1 σn1

1

Rn1−1

(

a2,σ2; b1 + 1 − i,b2,
σ1

τ1
, τ2

)

.

(5.4)

Consequently, the value RN(a,σ;b, τ) can be evaluated into sums of weighted finite multiple
zeta values according to a shuffle identity with respect to the weights σ and τ . We omit the
precise definition of this generalization and leave the details to the interested reader.

6. Conclusion

We presented a reciprocity relation for finite multiple zeta values, extending the previous
results of [1, 3]. The reciprocity relation involves a shuffle product identity for (finite)
multiple zeta values, for which we gave a proof using only partial fraction decomposition
and the combinatorial properties of the shuffle product. Moreover, we also presented the
reciprocity relation for weighted finite multiple zeta values.
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