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1. Introduction

We propose here to show that a large class of enumeration problems concerning
trees can now be solved rather easily and automatically . This is in contrast to
the situation several years ago when even the simplest problems in this class
caused serious problems .

To be more explicit, we deal with binary trees ; let B be the family of binary
trees, then we have the formal equation

8 B

In particular I had to make use of curves
which are continuous but which are so crinkly
that they can not properly said to have a di-
rection. I have already pointed out in my discus-
sion of the Brownian motion that these curves
had been more or less the stepchildren of mathe-
matics and had been regarded as rather unna-
tural museum pieces, derived by the mathema-
tician from abstract considerations, and with no
true representation in physics. Here I found
myself establishing an essential physical theory
in which such curves played an indispensable role .

Norbert Wiener, I am a mathematician
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expressing the fact that a binary tree is either empty or consists of a root together
with a left and right subtree, each one being itself a binary tree .

We define the size It of a tree t to be the number of internal nodes of t ; t" denotes
the number of trees of size n . We find immediately from the formal equation for
the generating function B(z) of trees :

B(z) := >2 t. z"= Z z1t1=1+zB2(z)
n;r 0

	

tee

-141-4z- E 1 2n Z" .
2z

	

;?0n+1 n

We deal with the register function reg (t) of a tree t. This function is defined
inductively as follows :

reg (o) = 0

a
n _ l+reg(t1)

	

if reg(tl)=reg(t2)
reg (ti t2

	

max {reg(tl), reg(t2)} otherwise .

This function is of relevance in Computer Science; for this we refer to [1] .
For completeness we now cite all papers dealing with the register function :

[1-3, 5, 7-13] .
The recursive definition can be most easily visualised by labelling the nodes

of the tree in a bottom-up-sense ; the value of the root is then the desired value
reg (t). (Figure 1 .)

The marked nodes cause the register function to increase, we call them critical .
If we forget about all other nodes, we obtain the (ordered binary) forest of critical
nodes, in the example presented in Figure 2 .
In the next sections we deal with several enumeration problems concerning

the register function . The inter st is not so much in t___ hese parameters i elf brut,
in the methodoloogy that we are going to point out in a few seconds . However,
there are still unsolved problems, for instance, what is the average number of Q
components of the forest just mentioned?

We are interested in average values of certain parameters, where all trees of
size n are to be considered equally likely . Since these values are of an intrinsic
complexity, we confine ourselves to the determination of asymptotic equivalents ;
it will turn out that these contain periodic ffuctuationsieven if we do not compute
them in all the examples. Using appropriate generating functions, the average
value is

[Z"] E(z)

[z"] B (z )



Figure 1 .

Figure 2 .
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where the notion [z"] f (z) refers to the coefficient of z" in the Taylor expansion
of the generating function f (z). Such an E(z) is often

E(z)= 1: EP(z) or E(z)= 2: pEE(z),
p?1

	

pro

depending on what EE(z) counts .
So the first ste is to find ex licit ex ressions for theE ((z)'s, whatever they

might be, mostly by setting up recursions . Here, we use Rp(z), the generating
functions of trees with register function =p .

The next rule is to perform the change of variablejz=u/(1 +u) 2)in all generating
functions. Here are some special functions :

1-u

	

dz 1-u
B(z)=1+u, ~l-4z=l+u'

du (1+u) 3 '

1-u2 u 2'

	

1-u 2 u2D
Rp (z)=

	

2p,,, Sp(z) := E R~(z)=U 1-u

	

l?p

	

u 1-u2°

Remark that Sp(z) is the generating function of trees with register function >p.
The explicit values for RP(z) and SS(z) appear for the first time in [3] and [8] ;
an alternative (and easy) proof can be found in [12]. In Section 7 a further proof
is sketched.

Then it usually turns out that E(z) is a linear combination of

f(u) ~, co,U,
p? 1

where f (u) is a rational function and cop are defined by some arithmetic properties .
Each natural number n can be uniquely written as n=2'(1 +2j), m, j>O; in a lot
of cases co,, is a function of m and j. The corresponding Dirichlet series

wpP
PAl

has then a closed form expression .
One is interested in a local expansion of E(z) in a neighbourhood of its (unique)

singularity at the radius of convergence at z= 1/4 . This expansion can be nicely
written in terms of e(z) = J-- 4z for E-+O .

In this paper all expansions can be carried out to any desired degree of accuracy ;
henceforth we never worry about O-terms . In other words, if we have computed
that a certain coefficient in a power series expansion is asymptotic to a certain
quantity and we want to get the order of growth of the difference, we simply
get it by computing one more term in the asymptotic expansion .

H. Prodinger
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z-+1/4 means u-+1, or with u=e-` it means t--+0 . The desired local expansion
is obtained in terms oft. However, we can easily rewrite it in terms of e, since

1-2c+ . . . .

The expansion of the rational function f (u) is trivial .
For the sum one uses the Mellin integral transform . For details of this par-

ticularly useful feature we refer to a forthcoming book of Flajolet, R6gnier and
Sedgewick [6]

00
MV(t) :=V*(s) := fta- 'V(t)dt .

0

Since V*(at)=a-aV*(s), we see that

E P e -`P=Z COP
p-a Me-r ,

P

	

P

so that the transform of the series in question is the product of the associated
Dirichlet series and the classical gamma function r(s). The Mellin inversion
formula allows one to recover the original function :

e+ico

V(t)

	

1
=2~i

	

V*(s)t-ads,
C-iao

where c is some appropriate real constant . If we shift the line of integration to
the left, taking the residues into account, we thereby obtain an asymptotic series
of the function V(t) for t-+0. Since the integrand contains as ingredients only
things like T(s), C(s), (2a-1)- ', etc., the computation of the residues is par-
ticularly easy ; one just needs some special values of the functions involved [14] .
Observe that (2a -1) -1 has poles at Xk =(2kni)/log 2, whence the periodic fluc-
tuations already mentioned .
Once the local expansion is obtained, we use translation lemmas (see [4]);

they allow to go from the local expansion of the generating function to the asymp-
totic behaviour of the coefficients . For this one has to have a repertoire of known
expansion, like

[z"J	l	^,

	

4°n- ii2
,~I -4z .. 7t
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etc. The last step is then to divide by

[z"]B(z)-
1
J_4"n -3/2

2. The register pathlength

Let us recall the (ordinary) pathlength of a binary tree : one considers all paths
between the root and an internal node and counts the number of internal nodes
on such a path. Summing all those numbers over all paths yields the pathlength
of the tree .

If we count on each path only the number of critical nodes, we have defined
in this way the register path length rpl(t) of the tree t.

In this section we are concerned with the average register pathlength, consider-
ing each tree of size n to be equally likely .

We have the following recursion : (It[ stands for the number of nodes in the
tree t.)

rpl(p)=0
0

rpl

	

n, =rpl(t l )+rpl(t2 )
t i t2

We introduce the obvious generating function

P(z)= 1: rpl(t) zl`l
r

and obtain by a direct translation of the recursion for rpl the following equatior
for the corresponding generating functions :

P(z)=2zB(z)P(z)+ E([z"]zRD(z))nz"
p) 0

or

1

	

d
PP (z) _~l

_-4-z
zdz

p~
zR (z)

0

+ n
t l t 2

if the root is critical .



with

and

Now

with

v .
u (1+ u)3

	

1-u2 u 2'

	

(1-u 2 2pu2'(1+u 2')1: [

1 - U 2 1-U

	

+2

	

pyl

	

ill (1-u 2')2

	

u2

	

(1-u2D)3

(1+u)3 A(u)+(1 +u)2B(u),
u(1-u)

	

u

u 2'

A(u) P (1-u2')2

B(u)= 7
pal (1-u 2') 3

U 2'

	

_	U
Z		E AU-12PA(u) p%1

(1-u2')2 (1_U)2p,z ;~ o
U

+

	

( n) u",
(1-U)2 n,l

+/(n)= E 2 .
n=x2P

2"u2'(1+u2')

Now write n=2'"(1 +2j) in a unique way :

w(n)= E 2"-°(1+2j)=(1+2j)(2"'+1-1)
p=o

=2n-(1 +2j),

so that

u
A(u) (1-u)2-F(u)'

with

F (u) = I (1 +2j) u" .
n"bl

On the register function of a binary tree
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In a similar way,

with

Hence

with

This gives us

Now let

u(1+u) EVE Z
u
x2DB(u) _

(1-u)3
+A

.0 A 0

u (1 +u)
A

(1-u)3 +
n ~ 19(n)u ,

m
8(n)=

	

2"12=

	

[2'"-P(1+2j)]22P
n=A2P

	

P=0

=(1+2j)22m(2m+ 1 -1)=2n2-n (1 +2j) .

u(1+u)
B(u) (1-u) 3 -D(u),

D(u)= 2m(l+2j)2u" .
n 1

P(z)=(I uu3) F(u)-lU) 2
D(u) .

CP(u)= (1 +2j) n"u",
nil

so that Co(u) = F(u), C l (u) = D(u) .
The corresponding Dirichiet series CP(s), which is obtained by replacing u"`

by k - ' is then

Cp(s)= E [2m(1+2j)] '(1+2j)[2m(1+2j)]P
m,/30

_ Z 2m(P- 3) > ( 1 +2j)P+1-r
m20

	

JT.O



To find the local behaviour of CC(u) as t tends to zero, we Mellin transform it : .

WlCp(e- `)=9J1 2: e`(1 +2j) n°
n ;% 1

= r(s) Cs(s) .

The Mellin inversion formula gives for some c>p+2:

e+iao
1

	

2S-(P+1~ -1Cv(e `) 2~i
f

T(s)2	
2s-"-1

	 ~(s-(p+1))t-'ds

c-ico

Shifting the line of integration to the left and collecting residues we find

Cp(e-t) .-.j(p+1)! t
-p-2

if p=0 we have to add the term (originating from the double pole)

log 2
log t .

In particular we have

2

	

1

	

1
C°(e-`)

3 t-2 1210g 2

log t,

C
1(e-t

) 4t -3
3

Hence

On the register function of a binary tree
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25-(o+1) -1
=2 2s-°-1

	 i; (s -(P+ 1)) .

Now we set, as proposed, u=e-` and find quite easily

"r. .

(1+u)3 8 (1+u)2
~- and '-4 .

u(1-u) t u
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loge

	

as n-•oo .

The lower order terms involve periodic functions in 1094 n which could be deter-
.mined if desired.

.3 . The leaves determining the register function

Let us consider the forest of critical nodes . We want to count the number of
nodes on the highest level (this level is the register function) . Intuitively speaking,
if this number is small, deletion of just a few nodes would decrease the register
function . It is somehow more natural to extend the definition of a critical node
to the leaves . Counting in this way gives exactly twice the number described
first .
Let [z"wm] Qp(z, w) count the number of trees of size n and register function

,p with m leaves "on the maximal level", furthermore

a
N,(z) :=TQ,(z, w)J.v=1, N(z) :=,Z NN(z) .

pao

'We easily obtain the recursion

Q,(z, w)=2zQp(z, w) > R j(z)+zQ2_ 1(z, w),
I<P

H. Prodinger

1 1 log(1-4z)

6 log 2 J1-4z

The coefficient of z ° in P(z) is therefore asymptotic to

1 4"1og n

61og2 nn

We have to divide this quantity by t„-4"n - '" 2n -312 to obtain the average register
pathlength :

Theorem 1 . The aver,

	

q aster at en o , 'here all b
considered to be equalYvlikely, is asymptotic

re

Qo(z, w)=w .

r trees

p>1,



i

Hence

or

with

Let

On the register function of a binary tree
4-

Np(z)=2zNp(z)(B(z)-Sp(z))+2zN p_ 1(z)RP- 1(z),

N0(z)=1,

No(z)=NP - 1(Z)

	

2zRP-1(Z)
1-2z (B(Z)-SP(z))

2u 2p-1
= NP_ 1(z)1 +u 2A

P 2u2J - 1

;~ 1+u 2J

2"u 2P-1

(1-u2p+1)/(1-u2)

1 -u 2 2"u2"
•

	

1-2P+1

I -u2

	

2PU 2°

N(Z) -

	

I

	

1 ~
2P+1

•

	

P ,o 1-u
1-u 1: E 2pu 2Dtl+sxl

2
U Pro d3o

1-u 2
X(n)u",

•

	

nit

X(n)=2' if n=2'"(1+2j) .

C(u)= E X(n)u" ;
"D1

I

251

1) Another way of reasoning is as follows : The register function p is the size of the largest
"complete" binary tree; there is only one such tree in the forest . This complete tree has 2 1
leaves, hence N(z)= E 2•R,(z).

Pat 0
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Since

1-u 2
U

we find

N(z)--log2t+ -2+f 1

	

T(1+Xk)C(l+Xk)t -xk
og2 k*o

--1092C+-+-I1

	

T(1+Xk)C(1+Xk)E " .2 log 2k,,o

For the coefficient of z" in N(z) we have the asymptotic equivalent

l

	

4" + 1
Z T(1 +Xk)C(1 +Xk)4"n-1+zki2/T A

2log2 n log2 k,,o

	

2

-2t

H. Prodinger

the corresponding Dirichlet series C(s) is then

C(s)= 1 2"[2"(1 +2j)]
-,

1 2`-1
- 2 2s-1- - 1 ~(s) .

Therefore, as before,

2+ico
s

-11C(s)t-8ds .

2-iao

We have a double pole at s=1 and simple poles at s=I+ (2kni)/log 2, k E Z\{O}.
Since

we find

1
C(s)~s-1+y, T(s)-1-y(s-1) as s-l

1

	

3
C(e-')~
	 2

	

4
	t-llogt+ t -

210

	

1

S

+ 1 - Y, F(1+Xk)C(l+Xk)t -1-x-
2log2 k,' o



9o=
VTr

21 og 2
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By the duplication formula for the gamma function we have

( )

	

(L2_
Xk)

T(1 +Xk)lr Xk 2 = 17r Yk
r

We finally divide by t"-4" n-lien-3/2 and have :

Theorem 2. The average number of leaves on the maximum (register) level is asymp-
totic to

.Jn G(log4 n), n-+oo

with a periodic function G(x) with period 1 and the Fourier expansion

G(x)= 1: gke2kaix

kez

where

and

1

	

1 +Xk

	

k 0 .
9k=1/c1og2Xkl' 2

	

C(l+Xk),

4. The average register value of a node

We now sum all register values obtained by the labelling procedure described
in the introduction and divide by 2n+ I which is the total number of nodes .
The average of this quantity is then to be computed .

We consider a binary tree where each leaf is labelled (marked) and replace it
by E p'.Rp . In terms of generating functions this means

p ;1~ 0

W(z)= > (n+1)t"z" E pR,(z)
n _> 0

	

p30

where the coefficient of z" in W(z) is the sum of all register values in all trees of
size n .

1
W(

z
)

	

1-4z pao pR
p
(z)

.
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Since E pR,,(z) appeared already in the computation of the average register
pa0

function, and

'J1-4z 1-u t

we have (compare [5j) with a constant K

W (z)-? [t1o 2gt+Kt+ 1 E 2T(Xk)C(Xk) t z'+2
t

	

log 2 k#o

4

	

2
~21og2E+K'+lo 2 ° I'(Xk)C(Xk)E Xk+

Eg

and so

1 4"

	

4

	

4"nzk/2-1 2 . 4"
[z ] W (z)

	

1og2 n +log2 k,,oj'(Xk)~(Xk) T Xk

	

~nn
(2)

divide it by (2n+1)t"'2 . 4"ic -112n -1 / 2 and obtain

Theorem 3. The average register value of a node in a tree of size n is asymptotic to

r l

1 +-_ H(log4 n)
n

where H(x) is periodic with period 1 and the Fourier expansion

H(X)=

	

hke2kxtx
kez

with

and

H. Prodinger



5. The average number of registers
to evaluate r arithmetic expressions

Corresponding to the title we consider an ordered forest of r binary trees .
(r fixed) with altogether n internal nodes ("size n"). The register function extends
trivially by taking the maximum of the register functions of the r trees .

To compute the average we consider the obvious generating functions (compare
the introduction) :

E(z)= E B'(z)-(B(z)-Sp(z))'
P; 1

1-u2D-1
r

=(1 +u)'

	

1-	
p , l

	

1-u 2"

(1-u -1)u zo
=(1+u)' E 1- 1+	

p~> 1

	

1-u2P
r

(;)(1_U-1)

	

2Pz

=-(1+u)' E 1

	

z

	

U

E1(1-u 2A)2

Let us consider

u2ox
E2(u)=	 '

p,.l (1-u 2v)

e-t22o

TIE
-`) _Tl Y
	
(`2'x11-e)

e-tx

p ;1

	

(i-e )

1

	

2 +m-1
2s-l~e

tx

map

	

a,-1

z`
On the register function of a binary tree
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e '" t

__ r(s)

	

m 1

	

s

2s-l

	

m
Ma: l -1

_ r(s)

	

I

	

MA-1

	

'1 mx_ 2 + . . . m - '
2s-1 (A 1)! m1

	

2

r(s)
(~1 1)i ~I)(s-A+1)-0 i;(s-A +2)+ . . .
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Using the Mellin inversion formula we find for 1>,2

1

	

1

	

2
Ex(et)

-.22-1
t-x

22-1
-1 2 t-x+i + . . . .

For 2=1 there is a double pole "in the second term" ; this has also been computed
previously:

1

	

1

	

1

	

1
E 1(e t+ 2loge t-2 1092 27r + 4 +

y

21 Vg 2

1
+ log 2 Eo r(xk) C (xk) t-Xk

.

Also

-(1 +u)r(1-u-1)~^~(- 1)2+ 'tA2' 1-(r-A) 2

'Therefore

E(z)-

	

1 (-1)z+12' 1-(r-A)t r
x- 1 2~-1

	

2

	

~

	 1		2r(- 1)1+ '
r

A=221-1 -1 2

1

	

1

	

1

	

y
+rt2r

	

loge 1--109227r
+ +

2

	

4 210g2

1

+loge
o r(Xk)C(Xk)t

-xk

The huge bracket is already well-known ; from the two sums only the coefficient

	of t is of interest . It is 1'p

Y1 22
1(-1)A+'2r(-r+2) 2 (~

_ r

	

_1

	

'1 2 r( 1)z+ I ( r
22 -1 -1 2

1 x
=2r-1 r- ( z ) (r-~.)

	

-(1+1)
2+ 1 )1 =

0 .
x _ 1 2 -1



Since

B'(z)-'(2-2c)'-'2'-r2'E,

we see that the desired average is (with respect to the first two terms in the asymp-
totic expansion!) independent of r . Hence we have

Theorem 4. The average number of registers to evaluate r arithmetic expressions
of (altogether) size n is asymptotic to

log4 n+D(log4 n), n-+oo

With the well-known function D(x), being periodic with period 1 .

6. How early is the register function reached

If we regard the labelling procedure which yields the register function at the
root, it normally happens that this value appears already earlier . We now count
the number of nodes above this first occurrence; this number is >O. In this
section we are concerned with the average of this parameter .
Let QP(z, w) be the generating function of trees with register function p where

the coefficient of w' refers to the value j of our desired parameter . Furthermore

a
let NP(z)

	

QP(z , w)I

	

and N(z)= E N,(z) . Naturally, we are interested in
ow

	

w=1

	

P>-0

[z"] N(z)
[z"] B(z)

If we regard the original recursion for the register function reg and translate
it into an equation of generating functions we obtain :

QP =2zwQP

	

Rj+zRp-1, P>l, Q0=1
J<P

and therefore

1-2z (B-SP)

On the register function of a binary free
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NP = 2z RP(B- SP) + 2z NP(B - SP)

2z RP(B- SP)
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Let us consider

MO(u) P%a (1-u
2P+1)2

then

ua.2P

H. Prodinger

2(1+u)u 2P(1-u2P-1)
(1 -u2P)(1 +u 2P)2

2(1+u)u 2P 2(1+u)2

	

u 2,P+1

	

2(1+u)

	

u 3 .2P

(1-u2P+1 ) 2

	

U

	

(1-u2P+1)2' .'F

	

U

	

(1-u2P+1)2

2(1 + u)
N(z)=2(1+u)M1-

2(1 + u)2
M2+	M3 .

U

	

U

-t a 2P2
"t M ( - 9)="e°

	

,1 (1 -e- t2P) 2
e

~

	

e-t 2
L: 2-p'

	

9)2
p? 1

	

(1-e-

Me= 1

	

-t2 ~ (m + 1) e -mt
2'-1

	

o

-T(s)

	

a-2 -'M+_ m .
2'-1

	

m51

	

2

Apart from the 1'(s)/(2'-1)-factor we obtain for

a=1 : (2'-1-1)C(s-1)+1(2'-1)C(s)

a=2 : i;(s-1)

a=3 :

	

(2'-1-1)%(s-1)- (2'-1)i;(s) .

Applying the Mellin inversion formula again we find that M°(u) is asymptoti(
to

,,, 1 t-2 + 1 -1 + C(-1) logt

	

(a=1)
3

	

T '

	

21og 2
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