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Abstract. Recently, 2-protected nodes were studied in the context of ordered trees
and k-trees. These nodes have a distance of at least 2 to each leaf. Here, we study
digital search trees, which are binary trees, but with a different probability distri-
bution underlying. Our result says, that grosso modo some 31% of the nodes are
2-protected. Methods include exponential generating functions, contour integration,
and some elements from q-analysis.

1. Introduction

Cheon and Shapiro [2] started the study of 2-protected nodes in trees. A node enjoys
this property if its distance to any leaf is at least 2. A simpler notion is 1-protected:
exactly the nodes that are not leaves are 1-protected. In the cited paper, the family
of ordered trees was considered, and it was found that asymptotically a proportion of
1
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of the nodes is 2-protected. Recently, Mansour [9] complemented these results by
studying k-ary trees.

In the present note, we study the analogous quantity for Digital Search Trees (DSTs),
a structure that is important in Computer Science [7]. As trees, they are binary trees,
but the (probability) distribution is quite different. From a mathematical point of
view, they always lead to interesting and nontrivial considerations, with a flair of q-
analysis. Here are a few papers of relevance: [3, 10, 6, 8, 5] DSTs are constructed as
follows. Given a sequence of binary strings, we place the first in the root node; those
starting with “0” (“1”) are directed to the left (right) subtree of the root, and are
constructed recursively by the same procedure but with the removal of their first bits
when comparisons are made. See Figure 1 for an illustration.

In the following section we will show that the proportion of 2-protected nodes in the
DST model is about 31%; a more detailed statement will be given later.

We collect here are few notations. These quantities belong to the realm of q-series
and can be found in [1], although with a slightly different notation:

Qm =
m∏
k=1

(
1− 1

2k

)
, Q∞ =

∞∏
k=1

(
1− 1

2k

)
, Q(x) =

∞∏
k=1

(
1− x

2k

)
.

There is a formula that is equivalent to one of Euler’s partition identities:

Q(t) =
∑
m≥0

am+1t
m with am+1 =

(−1)m2−(m+1
2 )

Qm

.

Finally, we will use L = log 2.
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A : 1001
B : 0110
C : 0000
D : 1111
E : 0100
F : 0101
G : 1101
H : 1110
I : 1100
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Figure 1. A digital search tree with nine nodes, among which A and D
are 2-protected.

2. Average number of 2-protected nodes

Denote by ln the average number of 2-protected nodes in a random DST, built from
n data. By random we mean that whenever a decision has to be made whether to go
down to the left or right, a fair coin is tossed, and a direction is chosen with probability
1
2
.
The following recursion follows from the observation that, provided we have n + 1

data, k go to the left and n−k go to the right, and such a split happens with probability(
n
k

)
2−n. One node goes to the root and is always 2-protected except in the instances

k = 1 or k = n− 1. Therefore

ln+1 =
n∑
k=0

(
n

k

)
2−n
(
lk + ln−k + 1

)
−

∑
k=1 or n−1

(
n

k

)
2−n

= 1 + 21−n
n∑
k=0

(
n

k

)
lk − n21−n.

This recursion is true for n ≥ 3, with initial conditions l0 = l1 = l2 = 0, l3 = 1
2
.

Our treatment follows [3]. We introduce the exponential generating function L(z) =∑
n≥0 lnz

n/n! and translate the recursion:∑
n≥3

ln+1
zn

n!
=
∑
n≥3

zn

n!
+
∑
n≥3

zn

n!

n∑
k=0

(
n

k

)
21−nlk −

∑
n≥3

n21−n z
n

n!

or ∑
n≥0

ln+1
zn

n!
− l3

z2

2!
=
∑
n≥3

zn

n!
+
∑
n≥0

zn

n!

n∑
k=0

(
n

k

)
21−nlk −

∑
n≥3

n21−n z
n

n!
,

which leads after some simple manipulations to

L′(z) = ez − zez/2 − 1 +
z2

4
+ 2ez/2L(

z

2
).
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Now we introduce the Poisson generating function M(z) = e−zL(z) =
∑

n≥0mnz
n/n!

and rewrite the equation:

M ′(z) +M(z) = 1− ze−z/2 − e−z +
z2

4
e−z + 2M(

z

2
).

For n ≥ 1, we can read off the coefficients of zn/n!:

mn+1 = −(1− 21−n)mn + n(−1)n21−n − (−1)n +
n(n− 1)

4
(−1)n.

In order to solve it, we rewrite it as

mn+1(−1)n

Qn−1

=
mn(−1)n−1

Qn−2

+
n21−n − 1 + n(n−1)

4

Qn−1

,

which can be summed and leads to

mN+1(−1)N

QN−1

=
N∑
n=2

n21−n − 1 + n(n−1)
4

Qn−1

and eventually to

mN = QN−2(−1)N
N−2∑
n=1

1− (n+ 1)2−n − n(n+1)
4

Qn

.

Since

ln =
n∑
k=2

(
n

k

)
mk

we found the following explicit formula that we formulate as a theorem.

Theorem 1. The average number of 2-protected nodes in random DSTs of size N ≥ 1
is exactly given by

lN =
N∑
k=2

(
N

k

)
(−1)kQk−2

k−2∑
n=1

1− (n+ 1)2−n − n(n+1)
4

Qn

.

Now we turn to the asymptotic evaluation of lN as N → ∞. Again, we follow the
approach in [3] and use Rice’s integrals, which means that we are able to rewrite lN as a
contour integral. Changing the contour of integration and collecting residues produces
the asymptotic expansion of interest. Many examples have been described in [4]. In
order to do so, one must extend the function

Qk−2

k−2∑
n=1

1− (n+ 1)2−n − n(n+1)
4

Qn

so that is makes sense for any complex k, not just integers. This will be discussed now.
We have Qk−2 = Q∞/Q(22−k), and this makes sense for any k. Now we have, using

Euler’s identity mentioned in the Introduction,

1

Qn

=
Q(2−n)

Q∞
=

1

Q∞

∑
m≥0

am+12
−nm,



4 R.R.X. DU AND H. PRODINGER

and this makes sense for any n, since the smallness of the am’s handles all convergence
issues. Therefore

k−2∑
n=1

1− (n+ 1)2−n − n(n+1)
4

Qn

=
1

Q∞

∑
m≥0

am+1

k−2∑
n=1

[
1− (n+ 1)2−n − n(n+ 1)

4

]
2−nm.

The inner sum (on n) can be explicitly evaluated, but since it is long and ugly, we
don’t display it here, but the resulting form (that we keep in our Maple calculation)
can be used for any k ∈ C.

The integral expression is

lN = − 1

2πi

∫
C

Γ(N + 1)Γ(−z)

Γ(N + 1− z)
ψ(z)dz,

where C encircles the poles 2, 3, . . . , N and no others. The function ψ(z) is the extension
of

Qk−2

k−2∑
n=1

1− (n+ 1)2−n − n(n+1)
4

Qn

as just discussed. Changing the contour, one encounters other poles. They must be
subtracted and produce the asymptotic expansion that we need. The main contribution
comes from z = 1. There are also poles at z = 1 + χk, with χk = 2πik

L
, and they

contribute a tiny oscillating function N · δ(log2N), where the amplitude of δ(x) is
typically smaller than 10−5. In order to keep this note short and crisp, we refrain
from computing this function explicitly. It is not difficult, and there are many similar
examples in the literature. So we concentrate now on z = 1, and we will find a simple
pole. As a first step, we consider

lim
k→1

Qk−1

1− 21−k

k−2∑
n=1

[
1− (n+ 1)2−n − n(n+ 1)

4

]
2−nm.

This limit can be computed by Maple, with the result

bm :=
1

4L

B(2−m)

(2−m − 1)3(2−m − 2)2

and B(x) := 16L−48xL+ 48x2L−16x3L−20 + 60x−69x2 + 36x3−7x4−8x log (x) +
12x2 log (x)− 10x3 log (x) + 4x4 log (x). Note that b0 is interpreted as a limit:

b0 =
37

12L
− 4.

So we are left with the negative residue of

−Γ(N + 1)Γ(−z)

Γ(N + 1− z)

at z = 1, which is just N . Summarizing, we found the asymptotic behaviour.
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Theorem 2. The average number lN of 2-protected nodes in random DSTs of size N
admits the asymptotic expansion

lN = N · 1

Q∞

∑
m≥0

am+1bm +N · δ(log2N) +O(1),

where the numerical constant evaluates to 0.30707981393605921828549 . . . . The tiny
periodic function δ(x) has a Fourier expansion that could be computed in principle. The
remainder term O(1) stems from the next pole at z = 0.

For example, l500/500 = 0.305710 . . . .

Remark. Flajolet and Sedgewick in [3] solved an open problem of Knuth [7], and
considered the number of endnodes. They found this to be on average as β · N ,
with β = 0.372046812 . . . . Again, there are tiny oscillations. The quantity (1 − β)N
is (asymptotically) the number of 1-protected nodes. So, there are roughly 63% 1-
protected nodes, and our new results say that there are about 31% 2-protected nodes.
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