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Abstract. In this note an alternative analysis of a probabilistic counting algorithm due
to Flajolet and Martin is presented . The asymptotic evaluation of certain combinatorial
sums is performed via residue calculus instead of Flajolet's Mellin transform approach
that had to use some unpleasant real analysis .

1 . INTRODUCTION

A basic probabilistic counting procedure to estimate the number n of distinct elements
in a multiset M uses the following idea (compare [1]) : we map the possible domain
into the set of sufficiently long strings of 0 and 1 such that each string is taken as a
value of this mapping with equal probability (a so-called "hash-function") . The bitwise
OR-composition of all the images of the elements of M contains information on the size
of n : the position of the leftmost zero is used as an estimate of loge n. Let R be this
quantity. In [1] it is shown that the expected value Rn of R fulfills

THEOREM 1 .
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with N(s) = the analytic continuation of

4P(4p 3)4p~4p + 3~

We mention that S~ (x) is a continuous periodic function of period 1 with very small
amplitude and mean zero, so that for practical purposes this periodic fluctuations may
be safely ignored .

The variance on of the random variable R is very small :

THEOREM 2 .
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where N(s) is defined in Theorem 1, {'5j] o is the mean of Sr (x , and 82 (x) is again a
periodic function of very small amplitude and mean zero .

The second author wants to thank M . Drmota forr his advice and patience concerning TjX .
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Observe the somewhat erroneous expression for ~n in [1] whereas the numerical ap-
proximation therein is correct .

In [1] the Theorems are achieved by evaluating certain combinatorial sums by the use
of Mellin's integral transform .

In this note we gain the results by a more concise method which has proved to be
successful already in a number of other situations ([2],[8],[4]) .

2 . THE ANALYSIS

Let qn ,k be the probability that for a multiset of n distinct elements R > lc . In [1] it
is shown that
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Observing that

t>1

we have to evaluate certain alternating sums asymptotically .
For Rn we have from (2) and (1)
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where C surrounds the singularities z = 1, 2, . . . , n of the integrand .

(2)
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Using residue calculus it can be seen that the sum in (4) may be rewritten as a contour
integral :
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Expanding the contour of integration in a well-suited manner (compare [4] for tech-
nical details), we find

Resx= z ; ([ n ; zjf(ti)

	

(6)

where the sum is taken over all poles zi of [n ; z] f (z) with real part larger than some
fixed c that differ from 1, . . .,n .

In our instance we may write

f(=) = fi ( z) - f2(-),
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From [1] it follows immediately that f2(z) is analytic for Rz > -1 with 12 (0) = 0 .
If we use c = - • in (6) and take into account the residues at the poles z
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Combining these results we r.ederive Theorem 1 .
For the evaluation of N' (Q ) we use the following formula

zN'(0)=1og3 +
p>1
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which occurs by grouping terms four by four .
The analysis of the variance follows the same idea . We have
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where g2 (z) is analytic for ~z > -1 and fulfills g 2 (0) = 0 .
Calculating the residues of
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we find that, apart from periodic fluctuations of mean zero,
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From (8) we gain Theorem 2 immediately .
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