VISIBILITY PROBLEMS RELATED TO SKIP LISTS

KAMILLA OLIVER AND HELMUT PRODINGER

Abstract

For sequences (words) of geometric random variables, visibility problems related to a sun in north-west are considered. This leads to a skew version of such words. Various parameters are analyzed, like left-to-right maxima, descents and inversions.

1. Introduction

Assume that X is a geometrically distributed random variable, $\Phi\{X=$ $k\}=p q^{k-1}$, with $p+q=1$, and a word $x=a_{1} a_{2} \ldots a_{n}$ of n independent outcomes of such a variable is given. It is typically displayed as in Figure 1, with $n=14$, and the word is 31552252341111 . Assume that there is a sun standing straight in north-west. Then certain nodes are lit, and others are not, whence the two types of nodes in Figure 3.

Figure 1. A word of length 13

Figure 2. The same word, now with horizontal pointers akin to the skip-list structure

Date: September 23, 2017.
1991 Mathematics Subject Classification. 11B39.
Key words and phrases. Skip lists, geometric random variable, visibility, q-series.

Such a scenario was recently studied in [2] in the context of bargraphs. Further papers of Mansour and some of his team members about visibility questions are [4]; compare also [3].

A graphical depiction of geometrically distributed words (a combinatorial class that was extensively studied in the past) as in Figure 1 stems from a data structure called skiplist. It has also horizontal pointers, and they are related to a visibility problem, since the pointers are interrupted as indicated in Figure 2.

Figure 3. The sun stands in north-west, and some nodes are lit, others aren't.

Motivated by the recent paper [2], we study a sun standing in northwest and the number of lit nodes. The example in Figure 3 makes this very clear, 12 nodes are lit.

A moments reflexion tells us that the skew word $x^{*}=b_{1} b_{2} \ldots b_{n}$ with $b_{i}=a_{i}+i-1$ is relevant here. In our running example this is $x^{*}=$ 327867119111311121314.

Let us indicate the left-to-right maxima in this skew word:
$x^{*}=327867119111311121314$. The differences of two consecutive such records are $3,4,1,3,2,1$ (for this, we patched the word with a leftmost 0). The sum of these numbers is $14=3+4+1+3+2+1$, which, by telescoping, is also the largest value (the maximum) that occurs in the the skew word.

We are thus led to study in this paper the maximum of a random skew word of lenght n and the number of left-to-right maxima (which is 6 is the running example). The modification of the words that we call skew in this paper unfortunately does not allow us the elegant method of generating functions as in [5, 6].

We will take the opportunity and treat a few other combinatorial questions related to skew words as well, such as descents and inversions. Again, these questions are somewhat harder to deal with related to the non-skew (classical) versions.

We need some basic notation from q-calculus [1]: $(x)_{n}:=(1-x)(1-$ $x q) \ldots\left(1-x q^{n-1}\right)$ for $n \geq 0$ or $n=\infty$, as well as Cauchy's identity
(q-binomial theorem)

$$
\sum_{n \geq 0} \frac{(a)_{n}}{(q)_{n}} t^{n}=\frac{(a t)_{\infty}}{(t)_{\infty}}
$$

2. The maximum of random skew geometrically distributed

 WORDSLet \mathscr{M}_{n} be the maximum of a skew word. Its expectation can be computed as follows:

$$
\mathbb{P}\left(\mathscr{M}_{n} \leq k\right)=\left(1-q^{k}\right)\left(1-q^{k}\right) \ldots\left(1-q^{k-n+1}\right)=\frac{(q)_{k}}{(q)_{k-n}} ;
$$

for $k \geq n$, otherwise it is zero.
Consequently

$$
\begin{aligned}
\mathbb{E}\left(\mathscr{M}_{n}\right) & =n+\sum_{k \geq 0}\left[1-\frac{(q)_{n+k}}{(q)_{k}}\right]=n+\lim _{t \rightarrow 1} \sum_{k \geq 0}\left[t^{k}-\frac{(q)_{n}\left(q^{n+1}\right)_{k}}{(q)_{k}} t^{k}\right] \\
& =n+\lim _{t \rightarrow 1}\left[\frac{1}{1-t}-(q)_{n} \frac{\left(q^{n+1} t\right)_{\infty}}{(t)_{\infty}}\right] \\
& =n+\lim _{t \rightarrow 1}\left[\frac{1}{1-t}-\frac{(q)_{n}\left(q^{n+1} t\right)_{\infty}}{(1-t)(q t)_{\infty}}\right] \\
& =n+\left.(q)_{n} \frac{d}{d t} \frac{\left(q^{n+1} t\right)_{\infty}}{(q t)_{\infty}}\right|_{t=1}=n+\left.(q)_{n} \frac{d}{d t} \prod_{k \geq 1} \frac{1-q^{n+k} t}{1-q^{k} t}\right|_{t=1} \\
& =n+\left.(q)_{n} \frac{d}{d t} \prod_{k=1}^{n} \frac{1}{1-q^{k} t}\right|_{t=1}=n-\left.\frac{1}{(q)_{n}} \frac{d}{d t} \prod_{k=1}^{n}\left(1-q^{k} t\right)\right|_{t=1} \\
& =n+\sum_{k=1}^{n} \frac{q^{k}}{1-q^{k}} .
\end{aligned}
$$

The sum is a q-analogue of a harmonic number, and it is customary to denote the limit by

$$
\alpha_{q}:=\sum_{k \geq 1} \frac{q^{k}}{1-q^{k}} .
$$

Of course,

$$
H_{n}(q)=\sum_{k=1}^{n} \frac{q^{k}}{1-q^{k}}=\alpha_{q}+O\left(q^{n}\right)
$$

Further,

$$
\mathbb{E}\left(\mathscr{M}_{n}^{2}\right)=\sum_{k=0}^{n-1}(2 k+1)+\sum_{k \geq n}\left[1-\frac{(q)_{k}}{(q)_{k-n}}\right](2 k+1)
$$

$$
\begin{aligned}
& =n^{2}+\sum_{k \geq 0}\left[1-\frac{(q)_{n+k}}{(q)_{k}}\right](2 k+2 n+1) \\
& =n^{2}+(2 n+1) H_{n}(q)+2 \sum_{k \geq 0}\left[1-\frac{(q)_{n+k}}{(q)_{k}}\right] k \\
& =n^{2}+(2 n+1) H_{n}(q)+2 \lim _{t \rightarrow 1}\left[\frac{t}{(1-t)^{2}}-(q)_{n} \sum_{k \geq 0} \frac{\left(q^{n+1}\right)_{k}}{(q)_{k}} k t^{k}\right] \\
& =n^{2}+(2 n+1) H_{n}(q)+2 \lim _{t \rightarrow 1}\left[\frac{t}{(1-t)^{2}}-(q)_{n} t \frac{d}{d t} \frac{\left(q^{n+1} t\right)_{\infty}}{(t)_{\infty}}\right] \\
& =n^{2}+(2 n+1) H_{n}(q)+2 \lim _{t \rightarrow 1} t \frac{d}{d t}\left[\frac{1}{1-t}-(q)_{n} \frac{\left(q^{n+1} t\right)_{\infty}}{(1-t)(q t)_{\infty}}\right] \\
& =n^{2}+(2 n+1) H_{n}(q)+\left.(q)_{n} \frac{d^{2}}{d t^{2}} \frac{\left(q^{n+1} t\right)_{\infty}}{(q t)_{\infty}}\right|_{t=1} .
\end{aligned}
$$

We compute the second derivate alone:

$$
\begin{aligned}
\left.(q)_{n} \frac{d^{2}}{d t^{2}} \frac{\left(q^{n+1} t\right)_{\infty}}{(q t)_{\infty}}\right|_{t=1} & =\left.(q)_{n} \frac{d^{2}}{d t^{2}} \prod_{k \geq 1} \frac{1-q^{n+k} t}{1-q^{k} t}\right|_{t=1} \\
& =\left.(q)_{n} \frac{d^{2}}{d t^{2}} \prod_{k=1}^{n} \frac{1}{1-q^{k} t}\right|_{t=1} \\
& =\frac{2}{(q)_{n}^{2}}\left(\left.\frac{d}{d t} \prod_{k=1}^{n}\left(1-q^{k} t\right)\right|_{t=1}\right)^{2}-\left.\frac{1}{(q)_{n}} \frac{d^{2}}{d t^{2}} \prod_{k=1}^{n}\left(1-q^{k} t\right)\right|_{t=1} \\
& =2 H_{n}^{2}(q)-2 \sum_{1 \leq i<j \leq n} \frac{q^{i}}{1-q^{i}} \frac{q^{j}}{1-q^{j}} \\
& =2 H_{n}^{2}(q)-H_{n}^{2}(q)+H_{n}^{(2)}(q)=H_{n}^{2}(q)+H_{n}^{(2)}(q),
\end{aligned}
$$

with a q-analogue of a harmonic number of second order

$$
H_{n}^{(2)}(q)=\sum_{k=1}^{n}\left(\frac{q^{k}}{1-q^{k}}\right)^{2}
$$

Summarizing,

$$
\mathbb{E}\left(\mathscr{M}_{n}^{2}\right)=n^{2}+(2 n+1) H_{n}(q)+H_{n}^{2}(q)+H_{n}^{(2)}(q) .
$$

Therefore we have the variance:

$$
\begin{aligned}
\mathbb{V}\left(\mathscr{M}_{n}\right) & =\mathbb{E}\left(\mathscr{M}_{n}^{2}\right)-\mathbb{E}^{2}\left(\mathscr{M}_{n}\right) \\
& =n^{2}+(2 n+1) H_{n}(q)+H_{n}^{2}(q)+H_{n}^{(2)}(q)-\left(n+H_{n}(q)\right)^{2} \\
& =H_{n}(q)+H_{n}^{(2)}(q) .
\end{aligned}
$$

Theorem 1. The expected value and the variance of the parameter \mathscr{M}_{n} of a random skew geometrically distributed word of length n, are given by

$$
\begin{gathered}
\mathbb{E}\left(\mathscr{M}_{n}\right)=n+H_{n}(q), \\
\mathbb{V}\left(\mathscr{M}_{n}\right)=H_{n}(q)+H_{n}^{(2)}(q) .
\end{gathered}
$$

3. Left-to-Right maxima

Now we want to study the number of (strict) left-to-right maxima of the skew word x^{*}. As a preparation, let \mathscr{Y}_{m} be the indicator variable of the event " $a_{m}+m-1$ is a left-to-right maximum in the skew word x^{*}."

For the standard case, such computations appear in [5, 6]. However, as explained in the Introduction, this is more challenging here, and we managed only to get the expected value.

The expected value is computed as follows:

$$
\begin{aligned}
\mathbb{E}\left(\mathscr{Y}_{m}\right) & =\sum_{j \geq 1} p q^{j-1}\left(1-q^{j+m-2}\right) \ldots\left(1-q^{j}\right) \\
& =p \sum_{j \geq 0} q^{j} \frac{(q)_{m-1+j}}{(q)_{j}}=p(q)_{m-1} \sum_{j \geq 0} q^{j} \frac{\left(q^{m}\right)_{j}}{(q)_{j}} \\
& =p(q)_{m-1} \frac{\left(q^{m+1}\right)_{\infty}}{(q)_{\infty}}=\frac{p}{1-q^{m}} .
\end{aligned}
$$

Consequently, the expected value of the number of left-to-right maxima is

$$
\mathbb{E}\left(\mathscr{Y}_{1}+\cdots+\mathscr{Y}_{n}\right)=p \sum_{j=1}^{n} \frac{1}{1-q^{j}}=p n+p H_{n}(q)=p n+p \alpha+O\left(q^{n}\right)
$$

4. Descents and inversions

First, we want to count the number of pairs, such that $a_{i}+i-1>$ $a_{i+1}+i$, which means $a_{i}>a_{i+1}+1$. Let \mathscr{D}_{i} be the corresponding indicator variable.

$$
\mathbb{E}\left(\mathscr{D}_{i}\right)=\sum_{k \geq 1} p q^{k-1} \sum_{j>k+1} p q^{j-1}=\frac{q^{2}}{1+q} .
$$

Thus the expected value of the total number of descents is $(n-1) \frac{q^{2}}{q+1}$.
In a similar style, assume that $1 \leq i<j \leq n$ and let \mathscr{D}_{i} be the corresponding indicator variable " $a_{i}+i-1>a_{j}+j-1$." Then

$$
\mathbb{E}\left(\mathscr{D}_{i, j}\right)=\sum_{k \geq 1} p q^{k-1} \sum_{1 \leq h<\max \{1, k+i-j\}} p q^{h-1}=\frac{q^{1+j-i}}{1+q}
$$

The expected number of inversions is then

$$
\begin{aligned}
\mathbb{E}(\text { inversions }) & =\sum_{1 \leq i<j \leq n} \mathbb{E}\left(\mathscr{D}_{i, j}\right)=\sum_{1 \leq i<j \leq n} \frac{q^{1+j-i}}{1+q}=\frac{1}{1+q} \sum_{1 \leq i, h<n} q^{1+h} \\
& =\frac{n-1}{1+q} \sum_{1 \leq h<n} q^{1+h}=\frac{(n-1) q^{2}\left(1-q^{n-1}\right)}{1-q^{2}} .
\end{aligned}
$$

For $q \rightarrow 1$, this expression tends to $\frac{(n-1)^{2}}{2}$.

References

[1] George E. Andrews. The theory of partitions. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2.
[2] M. Archibald, A. Blecher, C. Brennan, A. Knopfmacher, and T. Mansour. Shedding light on words. Applicable Analysis and Discrete Math, 11:216-231, 2017.
[3] Ligia L. Cristea and Helmut Prodinger. The visibility parameter for words and permutations. Cent. Eur. J. Math., 11(2):283-295, 2013.
[4] Gregory Gutin, Toufik Mansour, and Simone Severini. A characterization of horizontal visibility graphs and combinatorics on words. Phys. A, 390(12):2421-2428, 2011.
[5] Helmut Prodinger. Combinatorics of geometrically distributed random variables: left-to-right maxima. In Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), volume 153, pages 253-270, 1996.
[6] Helmut Prodinger. On the m-enumeration of maximum and left-to-right maxima in geometrically distributed words. Pure Math. Appl. (PU.M.A.), 23(2):143-154, 2012.
(Kamilla Oliver) 9 Stellenberg Road, 7130 Somerset West, South Africa
E-mail address: olikamilla@gmail.com
(Helmut Prodinger) Department of Mathematical Sciences, Stellenbosch UniVErsity, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

