A MATRIX WITH SUMS OF CATALAN NUMBERS—LU-DECOMPOSITION AND DETERMINANT

HELMUT PRODINGER

Abstract

Following Benjamin et al., a matrix with entries being sums of two neighbouring Catalan numbers is considered. Its LU-decomposition is given, by guessing the results and later prove it by computer algebra, with lots of human help. Specializing a parameter, the determinant turns out to be a Fibonacci number with odd index, confirming earlier results, obtained back then by combinatorial methods.

1. Introduction

Let $\mathscr{C}_{n}=\frac{1}{n+1}\binom{2 n}{n}$ be the n-th Catalan number. The $n \times n$ Matrix

$$
\mathscr{M}=\left(\begin{array}{cccc}
\mathscr{C}_{t}+\mathscr{C}_{t+1} & \mathscr{C}_{t+1}+\mathscr{C}_{t+2} & \ldots & \mathscr{C}_{t+n-1}+\mathscr{C}_{t+n} \\
\mathscr{C}_{t+1}+\mathscr{C}_{t+2} & \mathscr{C}_{t+2}+\mathscr{C}_{t+3} & \ldots & \mathscr{C}_{t+n}+\mathscr{C}_{t+n+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathscr{C}_{t+n-1}+\mathscr{C}_{t+n} & \mathscr{C}_{t+n}+\mathscr{C}_{t+n+1} & \ldots & \mathscr{C}_{t+2 n-2}+\mathscr{C}_{t+2 n-1}
\end{array}\right)
$$

is considered in [1]; the determinant is considered by combinatorial means. The natural range of the parameters is $n \geq 1$ and $t \geq 0$. There are many methods to compute determinants of combinatorial matrices, as expertly described in [2, 3].

In this paper, we consider the LU-decomposition $L U=\mathscr{M}$, with a lower triangular matrix L with 1 's on the main diagonal, and an upper triangular matrix U. From this, the determinant comes out as a corollary, by multiplying the elements in U 's main diagonal. We restrict our attention to the instance $t=0$, since the computations seem to become very messy in the more general setting. But at the same time, we consider a more general matrix with an extra parameter x, viz.

$$
\mathscr{M}=\left(\begin{array}{cccc}
\mathscr{C}_{0}+x \mathscr{C}_{1} & \mathscr{C}_{1}+x \mathscr{C}_{2} & \ldots & \mathscr{C}_{n-1}+x \mathscr{C}_{n} \\
\mathscr{C}_{1}+x \mathscr{C}_{2} & \mathscr{C}_{2}+x \mathscr{C}_{3} & \ldots & \mathscr{C}_{n}+x \mathscr{C}_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
\mathscr{C}_{n-1}+x \mathscr{C}_{n} & \mathscr{C}_{n}+x \mathscr{C}_{n+1} & \ldots & \mathscr{C}_{2 n-2}+x \mathscr{C}_{2 n-1}
\end{array}\right)
$$

Not only do we get more general results in this way, but it is actually easier to guess the explicit forms of L and U with an extra parameter involved.

[^0]Here are the results that we found by computer experiments, which we consider to be the main contributions of this paper:

Theorem 1. For $k, i \geq 1$, set

$$
F(k, i)=\frac{1}{i(2 i-1)}\binom{2 i}{i-k} \sum_{0 \leq r \leq k} \frac{1}{2 k-r}\binom{2 k-r}{r}\left(r i+2 i k^{2}-i k-2 r k^{2}+2 k^{3}-k^{2}\right) x^{r}
$$

and

$$
g(k)=\sum_{0 \leq r \leq k}\binom{2 k-r}{r} x^{r}=F(k, k) .
$$

Then

$$
L[i, k]=\frac{F(k, i)}{g(k)} \quad \text { and } \quad U[k, j]=\frac{F(k, j)}{g(k-1)} .
$$

In the next section, first the expressions for $F(i, j)$ and $g(k)$ will be simplified, and then it will be proved that these two matrices are indeed the LU-decomposition of \mathscr{M}. Note that only one function $F(k, i)$ is used to represent both, $L[i, k]$ and $U[k, j]$. This shows in particular the symmetry related to $i \leftrightarrow j$.

2. Simplification and proof

In many instances where Catalan numbers are involved, it is beneficial to work with an auxiliary variable:

$$
x=\frac{-u}{(1+u)^{2}} \quad \text { and } \quad u=\frac{-1-2 x+\sqrt{1+4 x}}{2 x} .
$$

Then

$$
g(k)=\frac{1-u^{2 k+1}}{(1-u)(1+u)^{2 k}} .
$$

This is well within the reach of modern computer algebra (I use Maple). Further,

$$
F(k, j)=\left(1-u^{2 k}\right) \frac{\binom{2 j}{j-k}}{2 j(2 j-1)} \frac{2 k^{2}-j}{(1-u)(1+u)^{2 k-1}}+\left(1+u^{2 k}\right) \frac{\binom{2 j}{j-k} k}{2 j(1+u)^{2 k}} .
$$

Maple is capable to simplify $F(k, j)$, but the version given here, which is pleasant, was obtained with help from Carsten Schneider and his software [5]. Of course, once this version is known, Maple can confirm that it is equivalent to its own simplification. Note that $F(k, k)=g(k)$, and the L-matrix has indeed 1's on the main diagonal.

What is nice to note is that $L[i, k]=0$ for $i<k$ and $U[k, j]=0$ for $k>j$ automatically, thanks to the properties of binomial coefficients: a binomial coefficient $\binom{n}{m}$ with integers n, m such that $n \geq 0$ and $m<0$ is equal to zero.

Now we want to evaluate the (i, j) entry of the matrix $L \cdot U$:

$$
\sum_{k \geq 1} L[i, k] U[k, j] .
$$

Maple cannot evaluate this sum without help:

$$
\frac{F(k, i) F(k, j)}{g(k) g(k-1)}=\frac{\text { expression }}{\left(1-u^{2 k+1}\right)\left(1-u^{2 k-1}\right)}
$$

What helps here is partial fraction decomposition:

$$
\frac{F(k, i) F(k, j)}{g(k) g(k-1)}=\text { expression }_{1}+\frac{\text { expression }_{2}}{\left(1-u^{2 k+1}\right)}+\frac{\text { expression }_{3}}{\left(1-u^{2 k-1}\right)}
$$

In the second term the change of index $k \rightarrow k-1$ makes things better, so that Maple can compute the sum over k; however, a correction term needs to be taken in:

$$
\sum_{k=1}^{j} \frac{F(k, i) F(k, j)}{g(k) g(k-1)}=\sum_{k=1}^{j} \frac{\text { expression }_{4}}{\left(1-u^{2 k-1}\right)}-\left.\frac{\text { expression }_{2}}{\left(1-u^{2 k+1}\right)}\right|_{k=0}
$$

All the expressions are long and can be created with a computer. The sum can now be computed, and, switching back to the x-world, simplifies (again with a lot of human help, e. g., to simplify expressions in which the Gamma-functions appears) the last sum to

$$
\mathscr{C}_{i+j-2}+x \mathscr{C}_{i+j-1},
$$

as it should. For our simplification, we still used the variable u in (4]. However, for small x and u, the connection between the two variables is bijective.

All the details can be checked in the maple worksheet [4]. Perhaps a quick comment how the partial fraction decomposition is working is the essential formula

$$
\frac{1}{g(k) g(k-1)}=(1-u)(1+u)^{4 k-3}\left[\frac{1}{1-u^{2 k-1}}-\frac{u^{2}}{1-u^{2 k+1}}\right] .
$$

3. The determinant

The values in the main diagonal are given by

$$
U[k, k]=\frac{g(k)}{g(k-1)}
$$

Consequently

$$
\prod_{k=1}^{n} U[k, k]=\frac{g(n)}{g(0)}=g(n) .
$$

Setting $x=1$, as in [1], means $u=-\frac{3+\sqrt{5}}{2}=-\alpha^{2}$, with $\alpha=\frac{1+\sqrt{5}}{2}$ being the golden ratio. We also need $\beta=\frac{1-\sqrt{5}}{2}$. After some straightforward simplifications, this can be rewritten in terms of Fibonacci numbers:

$$
g(n)=\frac{1+\alpha^{4 n+2}}{\left(1-\alpha^{2}\right)^{2 n}\left(1+\alpha^{2}\right)}=\frac{1+\alpha^{4 n+2}}{\alpha^{2 n} \sqrt{5} \alpha}=\frac{\alpha^{2 n+1}-\beta^{2 n+1}}{\sqrt{5}}=F_{2 n+1} .
$$

References

[1] Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger. Catalan determinants-a combinatorial approach. Congr. Numer., 200:27-34, 2010.
[2] C. Krattenthaler. Advanced determinant calculus. volume 42, pages Art. B42q, 67. 1999. The Andrews Festschrift (Maratea, 1998).
[3] C. Krattenthaler. Advanced determinant calculus: a complement. Linear Algebra Appl., 411:68-166, 2005.
[4] H. Prodinger. Maple computations. https://www.math.tugraz.at/~prodinger/quinn-clean.mw, 2021.
[5] C. Schneider. Symbolic Summation Assists Combinatorics. Sem. Lothar. Combin., 56, Article B56b: 1-36, 2007.

Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa and Department of Mathematics and Mathematical Statistics, Umea University, 90736 Umea, Sweden

Email address: hproding@sun.ac.za

[^0]: 2010 Mathematics Subject Classification. 05A15, 11B39, 15B36 .
 Key words and phrases. Catalan numbers, LU-decomposition, determinant, computer algebra.

