MIN-TURNS AND MAX-TURNS IN k-DYCK PATHS: A PURE GENERATING FUNCTION APPROACH

HELMUT PRODINGER
A christmas present for all k-Dyck paths lovers.

Abstract

Dyck paths differ from ordinary Dyck paths by using an up-step of length k. We analyze at which level the path is after the s-th up-step and before the $(s+1)$ st up-step. In honour of Rainer Kemp who studied a related concept 40 years ago the terms MAX-terms and min-terms are used. Results are obtained by an appropriate use of trivariate generating functions; practically no combinatorial arguments are used.

1. Introduction

Our objects are k-Dyck paths, having up-steps $(1, k)$ and down-steps $(1,-1)$, and never go below the x-axis. At the end, they reach the x-axis, but we also need versions that end at a prescribed level different from 0 . Much material about such paths can be found in [6].

We consider MAX-turns, where each up-step ends and MIN-turns, where each up-step starts. The figure 1 explains the concept readily:

Figure 1. The first 4 max-turns and the first 4 min-turns are shown.
k-Dyck paths can only exist for a length of the form $(k+1) N$, which is clear for combinatorial reasons or otherwise. We want to know the average level of the s-th maX-turn resp. MIN-turn, amoung all k-Dyck of the same length. In order to do this,

Date: December 12, 2021.
Key words and phrases. Dyck paths, generating functions, kernel method.
we sum the level of the s-th MAX-turn resp. MIN-turn, over all k-Dyck paths of length $(k+1) N$. To get the average, one only needs to divide by the total number of such k-Dyck paths.

Our main achievment is to get fully explicit functions

$$
\max (z, w)=\sum_{N \geq 0, s \geq 1} z^{(k+1) N} w^{s}[\text { cumulative level of the } s \text {-th mAX-turn } \quad \text { in all } k \text {-Dyck paths of length }(k+1) N]
$$

and

$$
\operatorname{Min}(z, w)=\sum_{N \geq 0, s \geq 1} z^{(k+1) N} w^{s}[\text { cumulative level of the } s \text {-th min-turn } \quad \text { in all } k \text {-Dyck paths of length }(k+1) N] .
$$

As a bonus we get $\operatorname{OSC}(z, w):=\max (z, w)-\min (z, w)$; this cumulates the lengths of the wavy line between the s-th MaX-turn and s-th Min-turn, which is a somewhat simpler function. In this way, we recover some of the results from [1] without resorting to any bijective combinatorics. Note that such a wavy line might have length zero as well, if two up-steps follow each other immediately. Rainer Kemp in [4] has considered mAX- and min-turns for Dyck paths, although his definitions were slightly different (peaks and valleys).

The key to the success of our method is the simple but perhaps unusual identity

$$
\sum_{i \geq 0}\left(\left[z^{i}\right] f(z)\right) \cdot y^{i}=f(y)
$$

2. Some basic observations

As we will see soon, the equation $u=z+z w u^{k+1}$ plays a major role when enumerating k-Dyck paths. The equation is of the form $u=z \Phi(u)$, with $\Phi(u)=1+w u^{k+1}$, so it is amenable to the Lagrange inversion [3], and

$$
\begin{aligned}
{\left[z^{(k+1) N+1}\right] u } & =\frac{1}{(k+1) N+1}\left[u^{(k+1) N}\right]\left(1+w u^{k+1}\right)^{(k+1) N+1} \\
& =\frac{1}{(k+1) N+1} w^{N}\binom{(k+1) N+1}{N}
\end{aligned}
$$

We will need the formula

$$
\begin{equation*}
\bar{u}=z \sum_{N \geq 0} w^{N} z^{(k+1) N} \frac{1}{k N+1}\binom{(k+1) N}{N} \tag{1}
\end{equation*}
$$

We also need the version where $w=1$, so \widehat{u} satisfies the equation $u=z+z u^{k+1}$:

$$
\begin{equation*}
\widehat{u}=z \sum_{\lambda \geq 0} \frac{1}{(k+1) \lambda+1}\binom{1+(k+1) \lambda}{\lambda} z^{(k+1) \lambda} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{u}^{-k}=z^{-k}-z \sum_{\lambda \geq 0} \frac{k}{\lambda+1}\binom{(k+1) \lambda}{\lambda} z^{(k+1) \lambda} \tag{3}
\end{equation*}
$$

3. MIN-TURNS

The following substitution is essential for adding a new slice (an up-step, followed by a maximal sequence of down-steps):

$$
u^{j} \longrightarrow z w \sum_{0 \leq i \leq j+k} z^{i} u^{j+k-i}=\frac{z w u^{k+1}}{u-z} u^{j}-\frac{w z^{k+2}}{u-z} z^{j}
$$

The technique of adding-a-new slice is described in [2].
Now let $F_{m}(u)=F_{m}(u ; z)$ be the generating function according to m slices; z refers to the lengths and u to the level of the m-th min-turn. The substitution leads to

$$
F_{m+1}(u)=\frac{z w u^{k+1}}{u-z} F_{m}(u)-\frac{w z^{k+2}}{u-z} F_{m}(z), \quad F_{0}(u)=1 .
$$

Let $F(u)=\sum_{m>0} F_{m}(u)$, so that we don't care about the number m anymore, since the variable w takes care of it; then

$$
F(u)=F(u ; z, w)=1+\frac{z w u^{k+1}}{u-z} F(u)-\frac{w z^{k+2}}{u-z} F(z)
$$

or

$$
F(u)=\frac{u-z-w z^{k+2} F(z)}{u-z-z w u^{k+1}}
$$

$u=\bar{u}$ is a factor of the denominator, but for z and u small, we have $u \sim z$, so this factor must cancel in the numerator as well. This is what one learns from the kernel method [5].

We find

$$
F(z)=\frac{\bar{u}-z}{w z^{k+2}}
$$

and further

$$
F(u)=F(u ; z, w)=\frac{u-\bar{u}}{u-z-z w u^{k+1}} .
$$

That ends the computation of the "left" part of the k-Dyck path. For the right one, we start at level h with an up-step and end eventually at the zero level. We don't use the variable w here. The kernel method could also be used, but there is a simpler way. Reading the path from right to left, there is a decomposition when the path leaves a level and never comes back to it. Note that \bar{u} / z is the generating function of k-Dyck paths. With this, we find

$$
\left(\frac{\bar{u}}{z}\right)^{h} z^{h}\left(\frac{\bar{u}}{z}-1\right)=\frac{(\bar{u}-z) \bar{u}^{h}}{z} ;
$$

the minus 1 term happens since the reversed path must end with a down-step. The formula works only for $h \geq 1$, but the instance $h=0$ is not needed (although easy). The fact that this generating function is essentially a power is part of our successful approach.

We now have

$$
\begin{aligned}
\operatorname{MIN}(z, w) & =\sum_{h \geq 1} h\left[u^{h}\right] F(u) \cdot \frac{(\bar{u}-z) \bar{u}^{h}}{z} \\
& =\sum_{h \geq 1}\left[u^{h-1}\right] \frac{d}{d u} F(u) \cdot \frac{(\bar{u}-z) \bar{u}^{h}}{z}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.\frac{(\bar{u}-z) \bar{u}}{z} \cdot \frac{-z u+u z w u^{k+1} k+\bar{u} u-\bar{u} z w u^{k+1} k-\bar{u} z w u^{k+1}}{u\left(u-z-z w u^{k+1}\right)^{2}}\right|_{u=\widehat{u}} \\
& =\frac{(\bar{u}-z) \bar{u}}{z} \cdot \frac{-z \widehat{u}+u z w \widehat{u}^{k+1} k+\bar{u} \widehat{u}-\bar{u} z w \widehat{u}^{k+1} k-\bar{u} z w \widehat{u}^{k+1}}{\widehat{u}\left(\widehat{u}-z-z w \widehat{u}^{k+1}\right)^{2}}
\end{aligned}
$$

A simplification that only uses $\widehat{u}^{k+1}=\frac{\widehat{u}-z}{z}$ eventually leads to

$$
\operatorname{MIN}(z, w)=\frac{k w \widehat{u}}{z(1-w)^{2}}+\frac{(\bar{u}-z)}{z^{2}(1-w)^{2} \widehat{u}^{k}}-\frac{(k+1) \bar{u} w}{z(1-w)^{2}}
$$

Theorem 1. The generating funtion $\operatorname{MiN}(z, w)$ where the coefficient of $z^{(k+1) N} u^{s}$ refers to the cumulative levels of the s-th MIN-turn, is given by

$$
\operatorname{MiN}(z, w)=\frac{k w \widehat{u}}{z(1-w)^{2}}+\frac{(\bar{u}-z)}{z^{2}(1-w)^{2} \widehat{u}^{k}}-\frac{(k+1) \bar{u} w}{z(1-w)^{2}}
$$

The next step is to expand this function:

$$
\begin{aligned}
{\left[w^{s}\right] \operatorname{Min}(z, w) } & =\left[w^{s}\right] \frac{k w \widehat{u}}{z(1-w)^{2}}-\left[w^{s}\right] \frac{(k+1) \bar{u} w}{z(1-w)^{2}}+\left[w^{s}\right] \frac{(\bar{u}-z)}{z^{2}(1-w)^{2} \widehat{u}^{k}} \\
& =\frac{s k \widehat{u}}{z}-(k+1) \sum_{i=0}^{s-1}(s-i)\left[w^{i}\right] \frac{\bar{u}}{z} \\
& +\sum_{i=0}^{s}(s+1-i)\left[w^{i}\right] \frac{(\bar{u}-z)}{z^{2} \widehat{u}^{k}} \\
& =\frac{s k \widehat{u}}{z}-(k+1) \sum_{i=0}^{s-1}(s-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& +\sum_{i=1}^{s}(s+1-i) \frac{1}{z \widehat{u}^{k}} z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& =\frac{s k \widehat{u}}{z}-(k+1) \sum_{i=0}^{s-1}(s-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& +\sum_{i=1}^{s}(s+1-i) z^{(k+1)(i-1)} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& -\sum_{i=1}^{s}(s+1-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \sum_{\lambda \geq 0}^{\lambda+1} \frac{k}{\lambda+(k+1) \lambda}\left(\begin{array}{c}
(k+1) \lambda
\end{array}\right.
\end{aligned}
$$

And now we read off the coefficient of $z^{(k+1) N}$; we assume that $N \geq s$, otherwise a path would not have an s-th MIN-turn:

$$
\begin{aligned}
{\left[w^{s} z^{(k+1) N}\right] \operatorname{MIN}(z, w) } & =s k \frac{1}{k N+1}\binom{(k+1) N}{N} \\
& -\sum_{i=1}^{s}(s+1-i) \frac{1}{k i+1}\binom{(k+1) i}{i} \frac{k}{(N-i)+1}\binom{(k+1)(N-i)}{(N-i)}
\end{aligned}
$$

Theorem 2. The sum of levels of the s-th MIN-turns in all the k-Dyck paths of length $(k+1) N$ is given by

$$
\frac{s k}{k N+1}\binom{(k+1) N}{N}-\sum_{i=1}^{s}(s+1-i) \frac{1}{k i+1}\binom{(k+1) i}{i} \frac{k}{(N-i)+1}\binom{(k+1)(N-i)}{(N-i)} .
$$

4. MAX-TURNS

It is easy to go from a min-turn to the next max-turn, just by doing one up-step. On the level of generating functions, this means

$$
G(u ; z, w)=F(u ; z, w) w z u^{k} .
$$

The right side is even easier than before, since level h must be reached without further restriction. Result:

$$
\begin{aligned}
&\left(\frac{\widehat{u}}{z}\right)^{h+1} z^{h}=\widehat{u}^{h-1} \frac{\widehat{u}^{2}}{z} \\
& \operatorname{MAx}(z, w)=\sum_{h \geq 1} h\left[u^{h}\right] G(u) \cdot \widehat{u}^{h-1} \frac{\widehat{u}^{2}}{z}=\frac{\widehat{u}^{2}}{z} \sum_{h \geq 1}\left[u^{h-1}\right] \frac{d}{d u} G(u) \cdot \widehat{u}^{h-1} \\
&=\frac{w k \widehat{u}}{z(1-w)^{2}}-\frac{w k \bar{u}}{z(1-w)^{2}}+\frac{w(\bar{u}-z)}{z^{2} \widehat{u}^{k}(1-w)^{2}}-\frac{w^{2} \bar{u}}{z(1-w)^{2}} .
\end{aligned}
$$

The same type of simplifications as before have been applied.
And now we go to the coefficients of this:

$$
\begin{aligned}
{\left[w^{s}\right] \operatorname{MAx}(z, w) } & =s \frac{k \widehat{u}}{z}-\sum_{i=0}^{s-1}(s-i)\left[w^{i}\right] \frac{k \bar{u}}{z} \\
& +\frac{1}{z \widehat{u}^{k}} \sum_{i=0}^{s-1}(s-i)\left[w^{i}\right] \frac{(\bar{u}-z)}{z}-\sum_{i=0}^{s-2}(s-1-i)\left[w^{i}\right] \frac{\bar{u}}{z} \\
& =s k \sum_{N \geq 0} z^{(k+1) N} \frac{1}{k N+1}\binom{(k+1) N}{N} \\
& -\sum_{i=0}^{s-1}(s-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& +\sum_{i=1}^{s-1}(s-i) z^{(k+1)(i-1)} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& -\sum_{\lambda \geq 0} \frac{k}{\lambda+1}\binom{(k+1) \lambda}{\lambda} z^{(k+1) \lambda} \sum_{i=1}^{s-1}(s-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& -\sum_{i=0}^{s-2}(s-1-i) z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} .
\end{aligned}
$$

And, again for $N \geq s$, we read off the coefficient of $z^{(k+1) N}$:

$$
\begin{aligned}
{\left[w^{s} z^{(k+1) N}\right] \operatorname{MAx}(z, w) } & =s k \frac{1}{k N+1}\binom{(k+1) N}{N} \\
& -\sum_{i=1}^{s-1}(s-i) \frac{1}{k i+1}\binom{(k+1) i}{i} \frac{k}{N-i+1}\binom{(k+1)(N-i)}{N-i} .
\end{aligned}
$$

Theorem 3. The generating function $\max (z, w)$ is given by

$$
\operatorname{MAx}(z, w)=\frac{w k \widehat{u}}{z(1-w)^{2}}-\frac{w k \bar{u}}{z(1-w)^{2}}+\frac{w(\bar{u}-z)}{z^{2} \widehat{u}^{k}(1-w)^{2}}-\frac{w^{2} \bar{u}}{z(1-w)^{2}}
$$

The coefficient $\left[w^{s} z^{(k+1) N}\right] \max (z, w)$ is for $N \geq s$ given by

$$
\frac{s k}{k N+1}\binom{(k+1) N}{N}-\sum_{i=1}^{s-1}(s-i) \frac{1}{k i+1}\binom{(k+1) i}{i} \frac{k}{N-i+1}\binom{(k+1)(N-i)}{N-i} .
$$

5. The oscillation

The cumulative function of the s-th oscillation (total length of the s-th wavy line in all paths of length $(k+1) N)$ is

$$
\operatorname{OSC}(z, w):=\operatorname{MAX}(z, w)-\operatorname{MiN}(z, w)
$$

There are some cancellations and simplifications that we don't show here, as there are no special skills needed to get the result

$$
\operatorname{OSC}(z, w)=\frac{\bar{u} w}{z(1-w)}-\frac{(\bar{u}-z)}{z^{2} \widehat{u}^{k}(1-w)}
$$

Further,

$$
\begin{aligned}
{\left[w^{s}\right] \operatorname{OSC}(z, w) } & =\sum_{i=1}^{s}\left[w^{i}\right] \frac{\bar{u}}{z}-\sum_{i=0}^{s}\left[w^{i}\right] \frac{(\bar{u}-z)}{z^{2} \widehat{u}^{k}} \\
& =\sum_{i=1}^{s} z^{(k+1) i} \frac{1}{k N+1}\binom{(k+1) i}{i}-\frac{1}{z \widehat{u}^{k}} \sum_{i=0}^{s}\left[w^{i}\right] \frac{(\bar{u}-z)}{z} \\
& =\sum_{i=1}^{s} z^{(k+1) i} \frac{1}{k N+1}\binom{(k+1) i}{i} \\
& -\sum_{i=1}^{s} z^{(k+1)(i-1)} \frac{1}{k i+1}\binom{(k+1) i}{i} \\
& +\sum_{\lambda \geq 0} \frac{k}{\lambda+1}\binom{(k+1) \lambda}{\lambda} z^{(k+1) \lambda} \sum_{i=1}^{s} z^{(k+1) i} \frac{1}{k i+1}\binom{(k+1) i}{i} .
\end{aligned}
$$

Finally, for $N \geq s$, we look at $\left[w^{s} z^{(k+1) N}\right] \operatorname{Osc}(z, w)$ and obtain

$$
\sum_{i=1}^{s} \frac{1}{k i+1}\binom{(k+1) i}{i} \frac{k}{N-i+1}\binom{(k+1)(N-i)}{N-i}
$$

This has been obtained in [1] by other methods.

References

[1] A. Asinowksi, B. Hackl, and S. Selkirk. Down-step statistics in generalized Dyck paths. arXiv:2007.15562, 2021.
[2] Philippe Flajolet and Helmut Prodinger. Level number sequences for trees. Discrete Math., 65(2):149-156, 1987.
[3] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[4] Rainer Kemp. On the average oscillation of a stack. Combinatorica, 2(2):157-176, 1982.
[5] Helmut Prodinger. The kernel method: a collection of examples. Sém. Lothar. Combin., 50:Art. B50f, 19, 2003/04.
[6] Sarah J. Selkirk. On a generalisation of k-Dyck paths. Master's thesis, Stellenbosch University, 2019.

Helmut Prodinger, Mathematics Department, Stellenbosch University, 7602 Stellenbosch, South Africa.

Email address: hproding@sun.ac.za

