
DEEPEST NODES IN MARKED ORDERED TREES

HELMUT PRODINGER

Abstract. A variation of ordered trees, where each rightmost edge might be marked
or not, if it does not lead to an endnode, is investigated. These marked ordered trees
were introduced by E. Deutsch et al. to model skew Dyck paths. We study the number
of deepest nodes in such trees. Explicit generating functions are established and the
average number of deepest nodes, which approaches 5

3 when the number of nodes gets
large. This is to be compared to standard ordered trees where the average number of
deepest nodes approaches 2.

1. Introduction

In [2] we find the following variation of ordered trees: Each rightmost edge might
be marked or not, if it does not lead to an endnode (leaf). They were introduced to
model skew Dyck paths using trees.

We depict a marked edge by the red colour and draw all of them of size 4 (4 nodes)
in a table at the end of this introductory section.

Now we move to a symbolic equation for the marked ordered trees:

A =

A · · · A

+

A · · · A A \ {◦}

Figure 1. Symbolic equation for marked ordered trees.
A · · ·A refers to ≥ 0 copies of A .

Recall that ordered (plane, planted plane) trees are simpler and are given by deleting
the last component with the red edge.

We also bring the notion of height into the game (length of longest chain of the root
to a leaf, measured in the number of nodes). Let Ah denote the family of marked
ordered trees with height ≤ h. Then

Ah+1 =

Ah · · · Ah

+

Ah · · · AhAh \ {◦}

Figure 2. Symbolic equation for marked ordered trees of bounded
height for height h ≥ 2.
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Figure 3. Example of a marked ordered tree.

The classical bijection between ordered trees and Dyck paths consists of walking
around the tree, and recording an up-step when walking down and recording a down-
step when walking up. This can be adapted to marked ordered trees to produce dec-
orated Dyck paths. The additional rule is to record a red down-step when walking up
a red (marked) edge.

Figure 4. The decorated Dyck path corresponding to Figure 3.

Decorated Dyck paths are in (simple) bijection to skew Dyck path, by replacing each
red down-step by a south-west (= (−1,−1)) step. The next tables show all marked
treed of size 4 (4 nodes) and the corresponding objects.

Figure 5. The skew Dyck path corresponding to Figure 4.

A representative example of trees and corresponding paths is in Figures 3, 4, 5.1

The main object of this paper is the analysis of the number of deepest nodes, i.e. the
nodes defining the height of the tree.

For ordered trees, this was investigated by Rainer Kemp [7], with important contri-
butions provided by Volker Strehl [11].

A complete list of all 10 marked ordered trees with 4 nodes is provided for the benefit
of the reader:2

height 4, 1 node
on bottom level

1Thanks are due to G. Feierabend for the drawings.
2G. Feierabend has compiled lists for all trees with up to 6 nodes

https://www.math.tugraz.at/ prodinger/pdffiles/gregg.pdf.
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height 4, 1 node
on bottom level

height 4, 1 node
on bottom level

height 4, 1 node
on bottom level

height 3, 1 node
on bottom level

height 3, 1 node
on bottom level

height 3, 1 node
on bottom level

height 3, 2 nodes
on bottom level

height 3, 2 nodes
on bottom level

height 2, 3 nodes
on bottom level

For completeness, it is mentioned that the average height of such marked ordered
trees was already identified to be asymptotic to 2√

5

√
πn [8], which is slightly smaller

than
√
πn in the classical case [1].

2. Enumeration

We start by the enumerating the marked trees according to the number of nodes.
Translating the symbolic equation,

A =
z

1− A
+

z(A− z)

1− A
= −z +

z(2− z)

1− A
,
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with the relevant solution

A(z) =
1− z −

√
1− 6z + 5z2

2
= z + z2 + 3z3 + 10z4 + 36z5 + 137z6 + 543z7 + 2219z8 + · · · ,

and the sequence 1, 1, 3, 10, 36, . . . of coefficients is sequence A002212 in [10]. Next we
enumerate the classes Ah according to the size. The treatment of deepest nodes will
come a bit later. The enumerating sequence of Ah is defined to be Ah = Ah(z) =

fh
gh
.

The recursion is

Ah+1 = −z +
z(2− z)

1− Ah

, A1 = z.

We may set f1 = z, g1 = 1, f2 = z, g2 = 1− z. Then

fh+1 = zfh + z(1− z)gh, gh+1 = gh − fh.

From this
gh+1 − gh+2 = zgh − zgh+1 + z(1− z)gh.

Solving the characteristic equation X −X2 = z− zX + z(1− z), we find the two roots

λ =
1 + z +

√
1− 6z + 5z2

2
, µ =

1 + z −
√
1− 6z + 5z2

2
.

The solution must be of the form

Ah =
C1λ

h − C2µ
h

C3λh − C4µh
,

and an attractive form could be written using the substitution z = v
1+3v+v2

, since then
λ
z
= 2 + v−1 and µ

z
= 2 + v. Then

Ah = z(1 + v)
(1 + 2v)h−1 − vh(v + 2)h−1

(1 + 2v)h−1 − vh+1(v + 2)h−1
,

which could be proved by induction as well.3 It is also worthwhile to write

v =
1− 3z −

√
1− 6z + 5z2

2z
.

Note that µ
z
= 2 + v and λ

z
= 2 + v−1. Further

µ

λ
=

(1 + z)

(2− z)z
µ− 1 =

v(2 + v)

1 + 2v
=: q.

All these equivalent forms are useful somehow.
Now we count the deepest nodes, using a second variable t. We write ph = ph(z, t),

and [znti]ph(z, t) is the number of marked ordered trees with n nodes, height ≤ h,
and i nodes on level h. For i = 0, this means that the tree has height < h, so
ph(z, 0) = ph−1(z, 1). The symbolic equation is used, but with a twist, since the
recursion does not allow to compute p2. We have

p1 = zt, p2 =
z

1− p1
=

z

1− zt
, ph+1 = −z +

z(2− z)

1− ph
, for h ≥ 2.

3G. Feierabend has worked out the details of such a proof
https://www.math.tugraz.at/ prodinger/pdffiles/gregg.pdf.
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Therefore

p3 = −z +
z(2− z)

1− p2
= −z +

z(2− z)

1−
z

1− zt

,

p4 = −z +
z(2− z)

1− p3
= −z +

z(2− z)

1 + z −
z(2− z)

1−
z

1− zt

,

p5 = −z +
z(2− z)

1− p4
= −z +

z(2− z)

1 + z −
z(2− z)

1 + z −
z(2− z)

1−
z

1− zt

, &c.

Expanding

p2 = z + tz2 + t2z3 + t3z4 + · · · ,
p3 = z + z2 + (1 + 2t)z3 + (1 + 3t+ 2t2)z4 + · · · ,
p4 = z + z2 + 3z3 + (6 + 4t)z4 + · · · ,
p5 = z + z2 + 3z3 + 10z4 + · · · .

We look at the coefficient of z4 and think about the list of 10 trees drawn earlier. For
height ≤ 2, one such tree appears, and it has 3 deepest nodes. Next, 3 trees appear
with one deepest node, and 2 with two deepest nodes. For height ≤ 4, four further
trees appear, with one deepest node each.

With a lot of help from Gfun [9], we get for h ≥ 2

ph = z(1 + v)

× (v2t− v2 + vt− 3v − 1)(1 + 2v)h−2 − (−v2 + vt− 3v + t− 1)vh−1(2 + v)h−2

(v2t− v2 + vt− 3v − 1)(1 + 2v)h−2 − (−v2 + vt− 3v + t− 1)vh(2 + v)h−2

= z(1 + v)
(v2t− v2 + vt− 3v − 1)λh−2 − (−v2 + vt− 3v + t− 1)vµh−2

(v2t− v2 + vt− 3v − 1)λh−2 − (−v2 + vt− 3v + t− 1)v2µh−2

= z(1 + v)
1−Rvqh−2

1−Rv2qh−2

with

R =
−v2 + vt− 3v + t− 1

v2t− v2 + vt− 3v − 1
= 1 +

v − 1

v

∑
k≥1

(1 + v)ktkzk.

The representation

R = 1 +
v − 1

v

t(1 + v)z

1− t(1 + v)z

might be the most attractive. The reader can compare this for t = 1 with Ah given
earlier.
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The most interesting generating function is

G(z, t) := zt+
∑
h≥2

(
ph(z, t)− ph(z, 0)

)
;

the coefficient of znti in G(z, t) for n, i ≥ 1 is the number of marked ordered trees with
n nodes and i deepest nodes.

3. Continuing with exact analysis

First, note that R|t=0 =
−v2 − 3v − 1

−v2 − 3v − 1
= 1. Then

ph(z, t)− ph(z, 0)

z(1 + v)
=

1−Rvqh−2

1−Rv2qh−2
− 1− vqh−2

1− v2qh−2

=
(1−Rvqh−2)(1− v2qh−2)− (1− vqh−2)(1−Rv2qh−2)

(1−Rv2qh−2)(1− v2qh−2)

=
(1− v)v(1−R)qh−2

(1−Rv2qh−2)(1− v2qh−2)

= (1− v)v

[
qh−2

1− v2qh−2
− Rqh−2

1−Rv2qh−2

]
,

or

ph(z, t)− ph(z, 0) =
z(1− v2)

v

[
v2qh−2

1− v2qh−2
− Rv2qh−2

1−Rv2qh−2

]
.

Summing,∑
h≥1

(
ph+1(z, t)− ph+1(z, 0)

)
=

z(1− v2)

v

∑
h≥1

[
v2qh−1

1− v2qh−1
− Rv2qh−1

1−Rv2qh−1

]

=
z(1− v2)

v

∑
h≥1

[
δqh

1− δqh
− Rδqh

1−Rδqh

]

=
z(1− v2)

v

∑
k≥1

[
δkqk

1− qk
− Rkδkqk

1− qk

]

=
z(1− v2)

v

∑
k≥1

δkqk(1−Rk)

1− qk

with

δ =
v(2v + 1)

v + 2
.

Using the binomial theorem,

Rk − 1 =
k∑

i=1

(
k

i

)(
v − 1

v

t(1 + v)z

1− t(1 + v)z

)i

.
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Putting things together,

G(z, t)− zt =
∑
h≥1

(
ph+1(z, t)− ph+1(z, 0)

)
=

z(v2 − 1)

v

∑
1≤i≤k

(
k

i

)(
v − 1

v

t(1 + v)z

1− t(1 + v)z

)i
δkqk

1− qk
.

The generating function is now fully explicit.

Theorem 1. The generating function G(z, t) where the coefficient of znti refers to the
number of marked ordered trees with n nodes and i deepest nodes, has the explicit form

G(z, t) = zt+
z(v2 − 1)

v

∑
1≤i≤k

(
k

i

)(
v − 1

v

t(1 + v)z

1− t(1 + v)z

)i
δkqk

1− qk
,

with z =
v

1 + 3v + v2
, q =

v(v + 2)

2v + 1
, and δ =

v(2v + 1)

v + 2
. □

Now we are interested in the average number of deepest nodes, assuming all trees of
size n to be equally likely. For that, we have to differentiate G(z, t) w.r.t. t, followed
by t = 1. We ignore the tree with one node and one deepest node. Only the quantity
R contains the variable t:

d

dt
(1−Rh)

∣∣∣
t=1

=
(1− v2)(1 + 3v + v2)h(v + 2)h−1vh−1

(2v + 1)h+1
=

(1− v2)(1 + 3v + v2)

(v + 2)v(2v + 1)
hqh.

Therefore

d

dt

∑
h≥1

(
ph+1(z, t)− ph+1(z, 0)

)∣∣∣∣
t=1

=
z(1− v2)

v

∑
k≥1

δkqk (1−v2)(1+3v+v2)
(v+2)v(2v+1)

kqk

1− qk

=
(1− v2)

2

(v + 2)v(2v + 1)

∑
k≥1

kδkq2k

1− qk
.

4. Asymptotics

For the following, we refer to [4] and use a hybrid approach, first the Mellin transform,
to establish to local behaviour, and then singularity analysis to switch to the behaviour
of the coefficients. The book [6] is of course also relevant here.

The goal is to find the behaviour of∑
k≥1

kδkq2k

1− qk
=

∑
k≥1

kv2kqk

1− qk
=

∑
k,j≥1

kv2kqjk

as z → 1
5
, or v → 1. First, we start with the simpler sum∑

k≥1

kq3k

1− qk

and discuss later that the difference is negligible. We set q = e−w. Then we deal with∑
k≥1

ke−3kw

1− e−kw
=

∑
k≥1

∑
j≥3

ke−kjw.
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The Mellin transform of this is then Γ(s)ζ(s− 1)
(
ζ(s)− 1− 1

2s

)
, and the next step is

to find the residues of Γ(s)ζ(s− 1)(ζ(s)− 1− 1
2s
)w−s left to the line ℜs = 3

2
, say. We

compute these residues at s = 1 and s = 0 (with a computer), with the (cumulative)
result − 1

2w
+ 5

24
. But w = − log(q), and we expand

(1− v2)
2

(v + 2)v(2v + 1)

( 1

2 log(q)
+

5

24

)
around v = 1, with the result

−1

3
(1− v)− 2

27
(1− v)2 + · · · .

One could from this translate to an expansion about 1−5z, but it is not necessary, since
the generating function of the marked ordered trees, established to be z(1 + v), which
we need for normalization, is ∼ 2

5
− 1

5
(1 − v) + · · · , and the quotient (−1

3
)/(−1

5
) = 5

3

is the average number of deepest nodes (leading term), when all trees of size n are
considered to be equally likely and n gets large.

Theorem 2. The average number of deepest nodes, when all marked ordered trees with
n nodes are considered to be equally likely, approaches 5

3
as n → ∞. □

Nodes Deepest nodes Trees Ratios

2 1 1 1.00000000000000

3 4 3 1.33333333333333

4 14 10 1.40000000000000

5 52 36 1.44444444444444

6 202 137 1.47445255474453

7 814 543 1.49907918968692

8 3367 2219 1.51735015772871

9 14224 9285 1.53193322563274

10 61122 39587 1.54399171445171

11 266336 171369 1.55416673960868

12 1174054 751236 1.56282978983968

13 5226196 3328218 1.57026853409242

14 23459020 14878455 1.57671075390556

15 106065578 67030785 1.58234127796653

16 482598675 304036170 1.58730678326858

17 2208111308 1387247580 1.59172114612736

18 10153335117 6363044315 1.59567254514713

19 46894469566 29323149825 1.59923029571739

20 217453338987 135700543190 1.60245002617664

21 1011990062528 630375241380 1.60537723580733

22 4725078802079 2938391049395 1.60804968523569

23 22127901099074 13739779184085 1.61049903368935

24 103910897639245 64430797069375 1.61275201247876

25 489188386162736 302934667061301 1.61483131299643

26 2308345828917289 1427763630578197 1.61675628898215

27 10915917653075084 6744284275226223 1.61854352628232

28 51723425586415104 31923955212096244 1.62020730961359

29 245539814027935212 151403298421257630 1.62176000515363
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It remains to discuss that replacing v by q leads to the same main term. We have

v− q =
v(v − 1)

1 + 2v
, v2− q2 =

3v2(v − 1)(1 + v)

(1 + 2v)2
, v3− q3 =

v3 (v − 1) (7v2 + 13v + 7)

(1 + 2v)3

and so on; there is always a factor v−1 present, so the asymptotics of the difference of
the two sums has an extra factor v − 1, which means one order of magnitude smaller.
This is perhaps easier to see when switching to the z-world: 1− v ∼

√
5
√
1− 5z, and

for instance (1−5z)3/2 leads already to coefficients that are smaller by a factor 1
n
. The

necessary background information can be found in [5].

5. Conclusion

The continued fraction expression for ph = ph(z, t) contains the variable t only at
the bottom level. It would be desirable to have an equivalent representation where
t appears only near the top of the continued fraction. This should then lead to an
identity of the Kemp/Strehl type [7, 11]. Flajolet’s paper [3] does not seem to be
immediately applicable.

So far, we were not successful with this.
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