PARTIAL SUMS OF HORADAM SEQUENCES: SUM-FREE REPRESENTATIONS VIA GENERATING FUNCTIONS

HELMUT PRODINGER

Abstract. Horadam sequences and their partial sums are computed via generating functions. The results are as simple as possible.

1. Introduction

Horadam sequences $[2,1] W_{n}=W_{n}(a, b ; p, q)$ are defined via

$$
W_{n}=p W_{n-1}+q W_{n-2}, \quad n \geq 2, \quad W_{0}=a, W_{1}=b .
$$

These numbers are of course a generalization of Fibonacci numbers, Lucas numbers and many others. The characteristic equation

$$
X^{2}-p X-q=0
$$

is essential, and the two roots are

$$
\lambda=\frac{p+\sqrt{p^{2}+4 q}}{2}, \quad \mu=\frac{p-\sqrt{p^{2}+4 q}}{2} .
$$

We define

$$
F_{n}=\frac{\lambda^{n}-\mu^{n}}{\lambda-\mu} \quad \text { and } \quad L_{n}=\lambda^{n}+\mu^{n},
$$

as these sequences resemble Fibonacci resp. Lucas numbers, and each solution of the recursion may be expressed as a linear combination of these two sequences. We have $F_{0}=0, F_{1}=1, L_{0}=2, L_{1}=p$. For instance

$$
W_{n}=\left(b-\frac{a p}{2}\right) F_{n}+\frac{a}{2} L_{n} .
$$

The paper [1] concentrates on finding expressions for

$$
\sum_{n \leq k \leq n+m} W_{k}=\sum_{0 \leq k \leq n+m} W_{k}-\sum_{0 \leq k \leq n-1} W_{k} .
$$

In the rest of this short paper, we will find simple expressions for

$$
S_{n}:=\sum_{0 \leq k \leq n} W_{k}
$$

using generating functions. The results do not contain summations, and can be expressed with the sequences F_{n} and L_{n}.

2. Generating functions

Standard computations produce

$$
W(z)=\sum_{k \geq 0} W_{k} z^{k}=\frac{a+z(b-p a)}{1-p z-q z^{2}}
$$

furthermore

$$
F(z)=\sum_{k \geq 0} F_{k} z^{k}=\frac{z}{1-p z-q z^{2}} \quad \text { and } \quad L(z)=\sum_{k \geq 0} L_{k} z^{k}=\frac{2-p z}{1-p z-q z^{2}}
$$

By general principles,

$$
\begin{aligned}
S(z) & =\sum_{k \geq 0} S_{k} z^{k}=\frac{1}{1-z} \frac{a+z(b-p a)}{1-p z-q z^{2}} \\
& =\frac{a-p a+b}{1-p-q} \frac{1}{1-z}+\frac{-b-q a+q z(p a-a-b)}{1-p-q} \frac{1}{1-p z-q z^{2}} \\
& =\frac{a-p a+b}{1-p-q} \frac{1}{1-z} \\
& -\frac{2 q a-p q a+2 q b+p b}{2(1-p-q)} \frac{z}{1-p z-q z^{2}}-\frac{q a+b}{2(1-p-q)} \frac{2-p z}{1-p z-q z^{2}} .
\end{aligned}
$$

Reading off the coefficient of z^{n} on both sides leads to

$$
S_{n}=\frac{a-p a+b}{1-p-q}-\frac{2 q a-p q a+2 q b+p b}{2(1-p-q)} F_{n}-\frac{q a+b}{2(1-p-q)} L_{n}
$$

This answers the finite sum problem addressed in [1] completely, since the answer is

$$
S_{n+m}-S_{n-1}=-\frac{2 q a-p q a+2 q b+p b}{2(1-p-q)}\left(F_{n+m}-F_{n-1}\right)-\frac{q a+b}{2(1-p-q)}\left(L_{n+m}-L_{n-1}\right) .
$$

References

[1] C. Cooper. Finite sums of consecutive terms of a second order linear recurrence relation. Integers, 21, \#A114, 2021.
[2] A. F. Horadam. Basic properties of a certain generalized sequence of numbers. Fibonacci Quart., 3, 161-176, 1965.

Helmut Prodinger, Mathematics Department, Stellenbosch University, 7602 Stellenbosch, South Africa.

Email address: hproding@sun.ac.za

