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Abstract

In this paper the variance of the size of an important data structure (called b-tries) is

studied using transformation results from the theory of modular functions . This continues

research work due to Knuth, Flajolet, Szpankowski and the authors .

1. Introduction

Analysis of algorithms is a rapidly developing area in Theoretical Computer Science : The

cost of the performance of algorithms, including topics as the storage requirements of

data structures and the execution time of certain subroutines, is usually described in

terms of worst case behaviour and average case behaviour .

Sophisticated methods have been applied in order to optimize the worst-case behaviour

of algorithms ; nevertheless for practical purposes the question of the average-case
performance of data structures and algorithms is considered more and more to be of

great importance .

From the mathematician's point of view, average-case analysis of algorithms is an area

asking for the use of methods from very different fields of mathematics, such as com
binatorics, probability theory, complex variable theory and, last but not least, methods

usually applied in analytic number theory . The purpose of this paper is to demonstrate

the latter via the analysis of a data structure which is of considerable importance in

Computer Science :

Digital searching is a familiar technique for the storage and retrieval of information

using the lexicographic (digital) structure of records . The most important algorithms are

described in Knuth's famous book C9] . A (finite) set of records represented by keys over

some alphabet (e .g . 0-1-sequences) is represented by a tree called trie, where the end-

nodes (or "leaves") contain the keys and the edges are labelled by letters from the



alphabet . The path from the root to a leaf is a minimal prefix of the key stored in the

leaf. An important variant of tries is obtained using a sequential storage algorithm for

subtrees with a size less than or equal to a fixed bound b : this enables to improve the

storage utilization by reducing the number of pointers used . Such a trie is called a b-trie

(compare 131, 151, 1131, 1141) . In other words : Given a finite set of keys, which we

assume to be given as 0-1-sequences, the corresponding (binary) b-trie may be con-

structed as follows :

If there are less than or equal to b keys all keys are stored in a single leaf . Otherwise

divide the set of keys into 2 (possibly empty) classes according to the first bit and pro-

ceed with each of the classes and the following bit in the same way until each class has

less than or equal to b elements : These classes are stored in the leaves determined by

their minimal common prefix .

Example. The binary 2-trie created by the keys

A = 01011 . . .

B = 10111 . . .

C = 01101 . . .

	

is

D = 10011 . . .

E = 01100 . . .

F = 01110 . . .

Important parameters of this data-structure have been studied by Knuth 191, Flajolet 151

and Szpankowski 1131, 1141 . For practical purposes the question of storage utilization,

i .e . the number of internal nodes of the created b-trie, is of great importance .

Under the assumption that all 0-1-sequences (of infinite length) are equally probable as

keys Knuth 191 gives for the average number IN of internal nodes of a b-trie generated

from N keys the asymptotic formula

IN = log 2 (b + 841092 N)) + O(1),

	

(1 .1)

where 81(x) is a continuous, periodic function of period 1 with known Fourier expansion

and small amplitude . (Compare Theorem 4; it should be noticed that in Knuth's solution

the i-o,.'rier coefficients are slightly erroneous!)

For practical purposes it is of great importance to gain more insight into the distribution

of the random variable in discussion . For this reason we aim to establish an asymptotic

formula for the variance VN : Interestingly enough it turns out that the variance is quite

small, i .e . of order N. The mathematics to achieve this result relies on the application

of methods which come from the area of analytic number theory, especially deep trans-

formation results for modular functions .

In the following we sketch our method in short : In the first step we set up recursions

for the probability generating functions . By differentiation we get recurrence relations

C,E



for the factorial moments which may be solved explicitly via the solution of corresponding

functional equations . The explicit expressions are always of the type

2] (k)(-1)kf(k) ,
k?b+1

where ( may be extended into the complex plane . To obtain asymptotic information we

use the following lemma which Knuth attributes to S . 0 . Rice 19 ; ex . 5 .2 .2 .-54] .

Lemma 1 . (compare [10]) Let C be a curve surrounding the points b+1, . . . N and f(z)

be analytic within C . Then

(k)(-1)kf(k) _ - 2ni

	

;z]f(z)dz
k? b+1

with
[N; z] _	(-1)N-1 N!

z(z-1) . . . (z-N)

In our application f is a meromorphic function and the asymptotic expansion of the

factorial moments is obtained via

E Res([N; z] f(z)) ,

where the sum is taken over all poles different from b+1, . . . , N. Thus we first derive a

more accurate asymptotic expansion for the expectation IN (Theorem 4) . The variance

is computed via the formula

2 .VN - WN+IN- I,

where wN denotes the second factorial moment . It turns out that formally VN starts

with order N 2 , namely a term of the form

N2(A+i(Iog2N)-1og22 82(Iog 2 N)),

where A is a constant and z (as well as S t ) is a continuous periodic function of mean

zero . The crucial point of the derivation is now to find a "simple" explicit expression for

the zeroth Fourier coefficient [S?]o of S 2 (x) (Note carefully that S2 (x) does not have

mean zero!) . This is gained by the application of some series transformation results due

to Ramanujan .

Surprisingly enough

A

	

loge 2 [8 1 ]0

	

0 .

and, by a continuity argument and the nonnegativeness of the variance, we conclude that

VN is of order N (Proposition 9) .

The exact form of the leading term follows from an accurate residue calculation (Theo-

rem 10) .



Some notational remarks : We will frequently use the following abbreviations :

1)

	

[z^]f(z) denotes the n-th coefficient in the Laurent series f(z) .

2) L = log 2 .

3)
Xk =

2k €rt i
L

2 . Results

Let FN (z) be the probability generating function where N refers to the number of records
and the coefficient of zk is the probability that the b-trie has k internal nodes . Then we

have

Lemma 2 .

	

F; (z) = 1

	

(i=0,1, . . . , b),
N

FN (z) =

	

2 -N(k)Fk(z)FN-k (Z)

	

(N>b) .
k=0

Proof. 2 -N (k) is the probability that k records start with 0 and N-k records start
with 1, the factor z reflects the root .

Now we get for the expectation IN = f-N (1) €

Lemma 3 .

Proof. From Lemma 2 we have

N
+21 -N L ( k )lk

k=0

Now let

N

	

k+b+1 k-1
IN

= Z (k)
(-1)1 -	

21-k b)

	

(N > b) ,
k=b+1

1 0 =1 1 = . . .=1b =0 .

L(z) =
N >- 0

(N>b), 10=1 1 = . . .=1 b =0 .

be the exponential generating function of the 1N 's .

The recursion immediately translates into

L(z) = e Z - eb (z) + 2L(2 z/2

with the truncated exponential function
2

e (Z) = 1+z+Z +

	

+ Z
b

b

	

2!

	

b!

The functional equation for L(z) becomes easier by introducing

L(z) = e
-.Z

L(z) _

	

IN NN
N >- 0



Taking coefficients we find

with

and

Lemma 5 .

with

8 1 (x) _ (- 1)b+l

82 (X) = (-1)b 1

11
L(z) = 2L(2) + 1- eb (z)e - z .

IN = 21-N IN + 8N.O - (- 1) N[1 - N + ( 2 -

	

+

	

+ (- 1) b ( b )] .

Now we use the elementary identity (cf . [121)
b

(N)(-1)i
i=0

to get the result .

Theorem 4. The expectation I N of the size of b-tries from N records fulfills asymptotically

_ ~(b+S1(Iog2N))-1- 21L S 2 (Iog 2 N)

kt0

kt0

2k-nix

2knix

VN = WN +IN - I 2N .

N
WN = y ( k )(-1)k wk

k=b+1

(--1)b(N-1)b

r(-1-Xk)( b )

I'(1--Xk)( b ) .

Proof. According to the Introduction we may apply Lemma 1 with

f(z) _ (-l)b +1 (z-1)
1-2 1- z

	

b

We find the following residues :

Res([N ;z]f(z) ; z = 1) = bL

	

,

Res([N ;z]f(z) ; z = 1-+Xk) = (-1) b+11 N1+xkr(-1-Xk)(1- Xk2N+1) )( b )

Res([N ; z] f (z) ; z = 0) _ -1 .

Adding up these values the result is obtained .

Now we turn to the second factorial moment wN = FF'(1) ; from this we will find the

variance VN by

1

	

21-N

	

b (N-1)(1-	 2
WN = 1 - 2 1-N 1_22-N (-1)

	

b

	

1 21-N )

+ L] (k)( kb 1 )( N-
b -1)(1 + 2k2 1 ) + (- 1)b+1 1221 N ( b 1) .

k=b+1



Proof. From Lemma 2 we get by twofold differentiation
N

	

N

	

N
WN = 22-N

	

(N) tk +2 1-N

	

(
k

) • k + 21-N

	

(k) II IN-1
k=0

	

k=0

	

k=0

or with

Now we note that

and
N

[Ni]eb2(z)e-2z =

further

Hence

(1-2 2-14 )1N -

NZ
W(z)

N?O
WN N !

W(z) = 2(L(2))2 + 4ez/' 2 L(2) + 2ez/'2 W(2) .

W(z) = e -z W(z) _ LJ WN NN
N >-0

L(z) = (L(z))2 =

	

L ziv
N NI

N >O
Then the functional equation can be simplified :

W(z) = 2L(2) + 4L(2) + 2W(2),
and by taking coefficients

WN

	

1_21-N 1
21-N IN + 22-N IN] for N?O .

n
Now we need an expression for IN which can be extended for complex values for N.

From

we obtain by squaring

L(z) - 1 + eb(z)e -z = €2 L( 2 )

L(z) +4 + e2(z)e-2z - 2 L(z) + 2e b(z)e -zL(z) - 2eb(z)e -Z
= 4 L(2)

or, by extracting coefficients, for N>b

'~

	

?N 2 -2z

	

ZN

	

~

	

b
N

	

N-k

	

2-N ^I~~-2IN +[ Ni ]eb (z)e

	

+2[Ni]eb(z)e-' L(z) -2~ (k)(-1)

	

= 2

	

IN .
k=0

b
(k)(-1)N-k = (Nb 1 )(-1) N+ b

k=0

[N](Z (-1)N+b(Nb )N,")2 = (-1)"y (k)(kb1)(N-b-1) :

N?O

	

k=0
N

[ N!
-zL(z) _

	

(k)(-1)N-k+b(N-~-1) Ik .
k=0

N
2LN + 2(-1)N+b(Nb 1) + (-UN+1

	

(k)(kb1)(N b
-1)

k=0
N

+ 2(_1) 1+1+b > (N) (-1)k(N b 1 ) lk -
k=b+1



Now we use that

Lemma 6 .

and find

1N =

	

N E 1)N~ b( 1 )(1

	

_Nb

	

-	-N ) + (- 1) N

	

k )(kbl)(N-b-1)(1 + 2k2
1-1 )

1-22-

	

1-21

	

k=b+1

which finishes the proof .

Interestingly enough the case b=1 is somehow different . Since this case was discussed

at length in our paper [7] we concentrate in the remainder on b >-2 .

with
f(z) _

(1 2 1 Z)z
(-1)b+1(Zb1)+	(1_21-2)1(12 22-z) (-1)b+1(zb1)-1_2 --z

+2( Z 6 1 )(-1)

	

(-1)i (z-1-b ) 2z- 1-b- ; + 2 Z (z)(,1-1)(z-k-1) 2k1 1_1

i=0

	

k>b+1

Proof . Note that by (k) = ~Nk 1 ) + ~N_k) we have

N-b-1Z (k)(k-1)(N-b-1) -
k=h+1

2
(N

b 1) ,~7(kb l)(N
k
1-b)

k

	

b

= 2(Nb 1)Z( N k-b)(--1)b)~(k)(- .1)i
k

	

i=0

2(N6 1)(-1) b >, (-1)'(N-i-b)
N
Z ..,(N-k-b-i)

i=0

	

k=b+1

2( Nb t)(-1) b Z (-lY(N i-b) 2N-1-b-i -
L (N -

k_b - i)

i=0

	

k=i

= 2(N6 1)(-1)b

	

b
(-1Y

(N -% -h) 2N-1-b-i - I

i=0

since

(-1)' (N-1
-b)(N-k_b-i)

	

IN 1 1 bb k)(k-i)
k=0 i=0

	

k i

_ > (N
k1-b) 8k.o = 1 .

k=0

This completes the proof .

=
(- 1 ) N+1+b

I
N 1)

` N

	

1-21-N

	

b

N
wN = Z ( k )(-1)k f(k)

k=b+1



Lemma 7 .

WN

	

-
(
2) L

	

b(b-1) + b(b?) l
bbl + 2(-1bb+ 1 b

) C> b -1) L1 ( t2b _ 11) t2 1-1 2~1

- ~L + bL 2-26(2b +2L (-1)b(bb)l~(-1)L(t2b+b) 1
l((+1) 2~-1

+ L2 . 83 (log2 N) + N- 84 (Iog 2 N) .

The periodic functions 8 3 (x) and 8 4 (x) have mean 0 ; their Fourier coefficients could be

determined in principle .

Proof. We can use again Rice's method (Lemma 1) with the function f(z) defined in

Lemma 5 . We see immediately that for b >-3 :

M) = . . . = f(b) = 0 .

therefore there are no residues of [N ;z]f(z) at 3, . .,b . Now we compute f(2) :

b
1	-4	2 	fb+i-2)21 -b-if(2) = L b(b-1) + b(b-1) ~l b-2

+ 4 ~ k(k-1)(k'2)
(kb-1)(-1)bk-~ b-2\

2k-I .- 1
k>b+1

From the discussion of Banach's matchbox problem (see e .g . [4] or [12]) we know that

b
0
b
_t_/ 22) 21-b-i =

	

+ 2-2b (2b
) ,

i=0
hence

f(2)

and thus

Res([N ;z]f(z) ;z=2) _ -(2)_f(2) .

The residues at z = 2 + Xk will not be computed explicitly . We turn now to f(1) : A some-

what lengthy but elementary computation which uses again the identity from Banach's

matchbox . problem results in

Res([N ;z]f(z) ;z=1) _ - L +L bb)2 -2 b

+ 2N(_ 1 )b-1 (2b

	

(-1Y~(k 2b
_1
)k(k-1) ' 2k ti-1

k>-b+1
Thus the proof is finished .

Now we turn to the constant term in the Fourier expansion of 8~ (x) .

	 3	2 1	
L b(b 1) + b(6 2U b + 4(-1)b+l

	

k(k( 1)1(k-2)
~kb1)(k+ b-2\ 2k

1 1-1
k>b+1



Lemma 8. The constant term [S2 ]p in the Fourier expansion of SI (x) is

[Si
10 = 12

4 .a
b(b-1) -6-(-b--l)

f26 ) +
L(~)b~2~ ~1~ (-1)'-1 12b-1 (12-1)1(2'-1)\

b

Proof .

[b2 ]o

2 b-1

1

	

1()(c)612 l
I ()( L )Iz = 2

	

(-1)d I r(2d~ z ( IXt1z -+ j2) .

= b!z' l>l 1-+IX112

	

6121>1 d>0

	

IXtI

	

j=0

Now we define the coefficients c t (s) (as in [7]) by

s-1

	

s-2

E ct (s)x t = 11 (x+j 2)

t=1

	

j=0

and have with s - b+1

[g1

	

d 47C2
)
t-d 1

]o

	

b!2

	

ct (s) Z (-1) ( L2

	

1>1
t=1

	

d>-0

With m = t-d - 1 this expression equals
s-1

	

4nz m .
= b

	

ct(s)(-1)t+'

	

(-1)m( L2 )

t=1

	

-co<m<t-1

	

l?1

with

12t-2d-3

sinh 21 2L

12m-1

sinh 21
2

L

The part of the sum concerning -co<m :50 equals 0, since for s?3

S-1
ct(s)(-1)t+' =

0

t=1

Treating the remaining sum (m?i) we consider

l2
12 = 2hm(~) - 2hn,( 2L 2 )

sinh
2-l217T2

L

(2 .1)

12m-1
hm(x) =

	

1 e2Lx-1 '

For these functions the following transformation formulae (due to Ramanujan) are known

([i1] resp . [2]) : For x,y>O with xy=n 2

x+

	

1

	

(2.2)
x . h 1(x) +y-hI(y) = 24 - 4

and for rn>_ 2

	

n

	

B2m

	

(2.3)
xm'hm(x) - (-y)m .hm(y) _ (xm - ( -y)m) 4m ,

where B‚ indicates the n-th Bernoulli number defined by

z _ Zn
eZ-1

	

Bn n !
n >-0



Thus (2 .1) turns into

2 €(-1)m+ 1 ( 422)m

	

(-1)G2
t

1-12m-1 + 4m (22m-1) - 8M, 1 .
2L

l>_1

From this we have

W110 = b12 (CI +C2 +C3 )

with C1, C2 , C3 referring to the 3 terms in the above expression .
S - 1

C 1 = 2L ~ c t (s)(-1) t (t-1) + Z
(-tic-1 t(t t-2-1)

t=1

	

t>2 2'-1

	

t2 1

From the definition of the constants c t (s) it follows by an easy computation that (for

s-1
ct(s)(-1)t(t-1) = 2(s-1)!(s-3)!

t=1
S-1
X ct(s)(-1)t 12t = ( - 1) S- ' €t €( 1+s-2)2s-3
t=1

s >-3)

and

(with (x)k=x(x-1) . . . (x-k+1)) . Hence

C

	

L(s-U!(s-3)!+2L(-1)S-'

	

( 1+s -2)2s-3
=

	

1>s-1

	

(12 -1) (2'-1)

and so (s =b+1)

W

	

b(b 1) +
L(b1)b bbl Z (-1)~- { 2b-11) (12 _1)(2 L -1)

We proceed with C3 , since C2 is more complicated :
S-1

C3 = - > c t(s)(-1) t = -c 1(s) = -(s-2)! 2

t=2
and therefore

C3

	

1
b1 2 -

	

b2 .

Now we turn to C 2 :
S-1

	

t-1
B

= C2(s) = L> ct(s)(-1)t

	

2m (22m-1) .
t=2

	

m=1

Since
ct (s+1) _ (s- 1) 2Ct (s) + ct-1 (s)

S - 1
~ct(s)(-1)t+' € Bt (22t -1) _ (2s--3)!2 2-2s

t=1
(compare C7] for the proof of the last identity) we find the following recursion :

C2(s+1) = s(s-2)C2(s)+L(2s-3)!22s-2

	

for s>_2, C2 (2)=0 .

and



Solving this recursion we get

As a final

So we obtain

C2 (s) = C2 (b+1) -_	L 	b 2k-2 22-2k

b12

	

b1 2

	

b(b-1)

	

( k ) 2k-2

step we note that

b

	

~2-2k(2k-2) 2	
k

	

2k-2
k=2

b-1

2 L k+1 (2k)2-zk - 2
k=0

b-1 1 1	1 	2k) -2k k- 1
[z ) 2 1-z 21 k+1 ( k 2 z 2

k>-0
1[Z b]

	

1

	

1

2 - 2-2b( fib)

C2(s) -	L	L 	2b 2b
b12

	

2b(b-1)

	

b(b-1) 2

	

( b ~'

and thus the announced result .

As a consequence of Lemma 7 we find

Proposition 9 . The variance VN fulfills

VN = O(N) for N-ƒo .

Proof. We have

	

,
2VN = wN + IN IN .

Collecting the contributions of order N2 to wN and IN we find :

[N2]VN =
L2 (53(1092N) - 2b&1 (1o9 2 N) - 81 (1o9 2 N) +[S;]o) = 85 (lo92 N),

where 85 (x) is contiunous since its Fourier series is absolutely convergent, periodic with
period 1 and mean zero . We claim that 85 (x) vanishes identically :

If 8 5 (x) would not do so we could find an E > 0 and an interval, say [a,b] S [0,1], such
that 85(X)<-E for xE[a,b] . Since Iog 2 N is dense modulo 1, the variance VN would be
negative for an infinity of values N, an obvious contradiction .

Remark : It shall be noticed that from the last proof it follows that all Fourier coefficients
of

83 (x) - 2bS 1 (x) - S2 (x) + [ 82 ] o

are zero, which yields identities for convolutions of the F-function occuring in the Fourier
coefficients of 82( X ) .



Theorem 10 . The variance VN of the size of b-tries from N records fulfills asympotically

VN ti N6 22b+7

	

b) + (l b

+1

bb)

	

(-1)L l(l+l) ~ c2b 11 ) 2L-1 } N'S 6 (log 2 N),

where S6 (x) is a continuous,, periodic function with mean zero and small amplitude .

Proof. We have VN = WN + LN - IN . Collecting the contributions of order N we get

(apart from the periodic fluctuations of mean zero) :

b 22b` bb ) Lb2 + 2( - 1)b(b)l~ (- 1)L(l2b (l+Ul(2 L-1)

	

L[S1 ]0 + L [S S2]0
The expression [S 1 S2 ]0 may now be treated in a similar manner as [S2 ] o in the proof

of Lemma 7 to get

f8 18 2 30 = [S~ ]0 + 62 - L (-1)
(bb 1)Z (-1)L ( I2b 11) 2 L -1 + i (bb)2-2b--

	

1

	

2b
1>-b

which gives the announced formula immediately .

Remarks : 1) The Fourier coefficients of S6 (x) could be determined via . the residues at

z=2+ -Xk and z=l+Xk . Since they are rather involved we omit explicit expressions here .

2) For b getting large the dominating term in the expression of Theorem 10 is

	 1	(2b)	 1 b -312
b-2 2b4-

,
b)

	

2I

This can be seen by a comparison of the series in the expression of Theorem 10 with

1 bb)`~ (-1)L+b ( c2b-11 ) 1 = b (
bb) (_@b ti 7L b -3/2 (9

3) For the variance (as well as for the expectation) the amplitudes of the periodic
fluctuations of mean zero are small compared with the dominating terms : For small

values of b this follows from explicit estimates using

II'(iy)I2 = y . si h(ny) .

	

([1)71	 )

For b getting large one might proceed as sketched for 8 1(x) in the following lines :

.Compare S 1 (x) with

S7 (x)
= b~ 57 e 2knix j- (-

Xk)Xk - ~
k$0

and estimate it as follows :

I S7(x)I

ti

61
~e-2

.2L"

(

b-~

k>1

	

00

b~
(2)b-1 f et.tb_1eL

	

dt
0



4) Even though we have proved Theorem 10 only for values b?2, it is easily checked

that the result of Theorem 10 coincides for b=1 with our previous result from C7] .

However, it should be noticed that the proofs of both instances for b are significantly

different .

We conclude with a small table of the constants appearing in Theorem 10 : We have

VN -Cb €N
with

C, = 0.845858 . . .

	

C2 = 0 .168054 . . .
C3 = 0 .070463 . . .

	

C4 = 0.040147 . . . .
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