ORDERED FIBONACCI PARTITIONS

$^{\mathrm{BY}}$ HELMUT PRODINGER $^{(1)}$

ABSTRACT. Ordered partitions are enumerated by $F_n = \sum_k k! \, S(n,k)$ where S(n,k) is the Stirling number of the second kind. We give some comments on several papers dealing with ordered partitions and turn then to ordered Fibonacci partitions of $\{1,\ldots,n\}$: If d is a fixed integer, the sets A appearing in the partition have to fulfill $i,j\in A,\ i\neq j\Rightarrow |i-j|\geq d$. The number of ordered Fibonacci partitions is determined.

1. The polynomials $F_n(x) = \sum_k k! \ S(n,k) x^k$ and the numbers $F_n := F_n(1)$ have appeared in the literature for several times (S(n,k)) are Stirling numbers of the second kind [2]): R. D. James [5] dealt with F_n considering the number of ordered nontrivial factorizations of a squarefree integer. In O. A. Gross [3] F_n appears as the total number of distinct rational preferential arrangements; this connection was recently rediscovered by J. P. Bartholemy [1]. The Bell numbers B_n [6] are counting the number of ways to partition the set $\{1, \ldots, n\}$. Now S(n, k) is the number of partitions of $\{1, \ldots, n\}$ into exactly k blocks. Thus $B_n = \sum_k S(n, k)$. This shows a very close relationship between B_n and F_n . F_n counts each partition with k blocks with the factor k! which refers to the number of ways to permute the blocks. So F_n can be interpreted as the total number of ordered partitions of a set with n elements (compare S. M. Tanny [9]).

In this note we first give some comments on the previous papers dealing with F_n and $F_n(x)$ and turn then to the case of *ordered d-Fibonacci partitions* of a set with n elements (cf. [7], [8]): We allow only those ordered partitions where the blocks $A \subseteq \{1, \ldots, n\}$ satisfy $i, j \in A$, $i \neq j \Rightarrow |i-j| \geq d$. Let $F_n^{(d)}$ be the number of those ordered partitions. Our main result is

$$F_n^{(d)} = 2^{1-d} \sum_{k=0}^{d-1} |s(d, d-k)| F_{n-k}$$

where |s(d, l)| are signless Stirling numbers of the first kind.

Received by the editors March 2, 1982 and, in final revised form, October 5, 1982. AMS Subject Classification (1980): 05A17

⁽¹⁾ This research was supported by Grant A7877 of the Natural Sciences and Engineering Council of Canada while the author was visiting the University of Western Ontario, London.

^{© 1983} Canadian Mathematical Society

2. It was observed [1], [3], [5] that

(1)
$$G(z) = \sum_{n \ge 0} F_n \frac{z^n}{n!} = \frac{1}{2 - e^z}.$$

From this the asymptotic behaviour of F_n was derived [1], [3], [5]:

(2)
$$F_n \sim \frac{n!}{2} \left(\frac{1}{\log 2} \right)^{n+1}, \quad (n \to \infty).$$

Using the method of subtracted singularities (Henrici [4]), a stronger result is most easily derived: Regarding the zeros of $2-e^z$, we find that G(z) has singularities at $z_k = \log 2 + 2k\pi i$, $k \in \mathbb{Z}$. The singularities in question are just simple poles; the local expansions about those poles are

(3)
$$G(z) = \frac{1/2}{z_k - z} + O(1), \quad (z \to z_k).$$

The knowledge of the local behaviour about the singularities gives enough information to grind out an asymptotic formula for F_n with an arbitrary small error term (by choosing $m \in \mathbb{N}$). We find

(4)
$$\frac{F_n}{n!} = \frac{1}{2} \sum_{|k| < m} z_k^{-(n+1)} + O(z_m^{-n}), \quad (n \to \infty).$$

S. M. Tanny [9] gives for $x \neq -1$ the following representation of $F_n(x)$ as an infinite series:

(5)
$$F_n(x) = \frac{1}{1+x} \sum_{k \ge 0} \left(\frac{x}{1+x} \right)^k x^n.$$

As pointed out in [9], this formula is only meaningful for |x/(1+x)| < 1, i.e. Re x > -1/2.

We give now a similar formula which is valid for |(x+1)/x| < 1, i.e. Re x < -1/2:

Let A(n, k) be the Eulerian numbers ([2]) and $A_n(u) := \sum_k A(n, k) u^k$. A formula of Frobenius ([2]) gives

(6)
$$A_n(u) = u \sum_{k=1}^n k! S(n, k) (u-1)^{n-k},$$

from which we conclude that

(7)
$$F_n(x) = \frac{x^{n+1}}{x+1} A_n \left(\frac{x+1}{x} \right).$$

Now it is well known that (e.g. see [2])

(8)
$$\frac{A_n(u)}{(1-u)^{n+1}} = \sum_{k \ge 0} u^k k^n,$$

which gives after simplification

(9)
$$F_n(x) = \frac{(-1)^{n+1}}{1+x} \sum_{k \ge 0} \left(\frac{1+x}{x} \right)^k k^n.$$

We remark that from (7) and the definition of $A_n(u)$ formula (16) of [9] is most easily derived.

We give yet another formula for F_n . For this, let $[z^n]f$ denote the coefficient of z^n in the power series f.

(10)
$$\sum_{k=0}^{n} (-1)^{k} \binom{k}{i} = \left[z^{n}\right] \frac{1}{1-z} \sum_{k\geq 0} (-1)^{k} \binom{k}{i} z^{k}$$

$$= \left[z^{n}\right] \frac{1}{1-z} \frac{1}{i!} (-z)^{i} \left(\frac{d}{d(-z)}\right)^{i} \frac{1}{1+z}$$

$$= \left[z^{n}\right] \frac{1}{1-z} \frac{1}{i!} (-z)^{i} \frac{i!}{(1+z)^{i+1}}$$

$$= \left[z^{n}\right] \frac{(-z)^{i}}{(1-z)(1+z)^{i+1}}.$$

Now

(11)
$$k! S(n, k) = \sum_{i>0} i^n (-1)^{k-i} \binom{k}{i}$$

and thus $(n \ge 1)$

$$F_{n} = \sum_{k=0}^{n} k! \, S(n, k) = \sum_{i \ge 0} (-1)^{i} i^{n} \sum_{k=0}^{n} (-1)^{k} \binom{k}{i}$$

$$= \sum_{i \ge 0} i^{n} [z^{n}] \frac{z^{i}}{(1-z)(1+z)^{i+1}}$$

$$= [z^{n}] \frac{1}{(1-z)(1+z)} \sum_{i \ge 0} \left(\frac{z}{1+z}\right)^{i} i^{n}$$

$$= [z^{n}] \frac{1}{(1-z)(1+z)} A_{n} \left(\frac{z}{1+z}\right) \cdot (1+z)^{n+1}$$

$$= [z^{n}] \frac{(1+z)^{n}}{1-z} A_{n} \left(\frac{z}{1+z}\right).$$

3. In [7], [8] the present writer defined a *d-Fibonacci set* $A \subseteq \{1, 2, ..., n\}$ to be a set with the property

(13)
$$i, j \in A, \qquad i \neq j \Rightarrow |i - j| \ge d.$$

The numbers $C_n^{(d)}$ of partitions of $\{1, \ldots, n\}$ where all sets are d-Fibonacci sets were determined; it turned out that

(14)
$$C_n^{(d)} = B_{n+1-d},$$

where B_m is a *Bell number*. Within this context, it is natural to consider $F_n^{(d)}$, the number of ordered partitions of $\{1, \ldots, n\}$ into d-Fibonacci sets. These numbers are most easily determined by use of a particularly elegant technique developed by Rota [6].

Let us recall from [7] that the number of functions $f:\{1,\ldots,n\}\to U$ (a finite set with u elements) such that

(15)
$$|\{f(i), f(i+1), \dots, f(i+d-1)\}| = d \text{ for all } i$$

is given by

$$(16) (u)_{d-1}(u-d+1)^{n+1-d},$$

where
$$(u)_d := u(u-1) \cdot \cdot \cdot (u-d+1)$$
.

The functions fulfilling (15) are partitioned with respect to their kernels: (The kernel of f is the partition of $\{1, \ldots, n\}$ defined by saying that a and b are in the same block iff f(a) = f(b).) Let $N(\pi)$ denote the number of blocks of the partition π . Then

(17)
$$(u)_{N(\pi)} = (u)_{d-1}(u-d+1)^{n+1-d}.$$

The application of the linear functional \bar{L} defined by $(u)_k \to 1$ for all k to (17) gives $C_n^{(d)}$, since each summand gives a contribution of 1. To find $F_n^{(d)}$, we have to use the linear functional L defined by $(u)_k \to k!$, because there are k! ways to "order" the k blocks of the partition, so that the contribution of a partition with $N(\pi)$ blocks to the application of L to the left-handside of (17) is $N(\pi)!$.

Tanny [9] has proved that for any polynomial p

(18)
$$L(p(u)) = p(0) + L(\Delta p(u))$$

with $\Delta p(u) = p(u+1) - p(u)$. Repeated application of (18) gives:

Let s be the smallest natural number such that $p(s) \neq 0$ holds (for $p \neq 0$); then

$$(19) 2sLp(u) = Lp(u+s).$$

Now we have

(20)
$$F_n^{(d)} = L(u)_{d-1}(u-d+1)^{n+1-d}$$

and thus using (19) with $p(u) = (u)_{d-1}$ and s = d-1

(21)
$$2^{d-1}F_n^{(d)} = L(u+d-1)_{d-1}u^{n+1-d}.$$

In Comtet [2] we find essentially that

(22)
$$(u+d-1)_{d-1} = \sum_{k=0}^{d-1} |s(d, k+1)| \ u^k,$$

where the |s(d, l)| are signless Stirling numbers of the first kind. From this we

infer

(23)
$$F_n^{(d)} = 2^{1-d} L \sum_{k=0}^{d-1} |s(d, k+1)| u^{n+1-d+k}$$
$$= 2^{1-d} L \sum_{k=0}^{d-1} |s(d, d-k)| u^{n-k}$$
$$= 2^{1-d} \sum_{k=0}^{d-1} |s(d, d-k)| F_{n-k}.$$

An easy consequence of (2) and (23) is

$$(24) F_n^{(d)} \sim 2^{1-d} F_n, \quad (n \to \infty).$$

REFERENCES

- 1. J. P. Bartholemy, An asymptotic equivalent for the number of total preorders on a finite set, Discrete Mathematics 29 (1980), 311-313.
 - 2. L. Comtet, Advanced Combinatorics, D. Reidel, Dordrecht (1974).
 - 3. O. A. Gross, Preferential arrangements, American Math. Monthly, 69 (1962), 4-8.
- 4. P. Henrici, Applied and Computational Complex Analysis, Vol. 2, John Wiley, New York and Toronto (1974).
 - 5. R. D. James, The factors of a squarefree integer, Canad. Math. Bull. 10 (1968), 733-735.
- 6. G.-C. Rota, The number of partitions of a set, American Math. Monthly, **71** (1964); reprinted in G.-C. Rota: *Finite Operator Calculus*, Academic Press, New York (1975).
- 7. H. Prodinger, On the number of Fibonacci partitions of a set, The Fibonacci Quarterly 19 (1981), 463-466.
- 8. H. Prodinger, Analysis of an algorithm to construct Fibonacci partitions, R.A.I.R.O., Theoretical Informatics, to appear.
- 9. S. M. Tanny, On some numbers related to the Bell numbers, Canad. Math. Bull. 17 (1975), 733-738.

Institut für Algebra und Diskrete Mathematik, Technische Universität Wien, Gubhausstraße 27–29, A-1040 Wien, Austria.