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A sequence of O’s and l’s is constructed which is related to the Gray code, and which has 
only subwords ww of length not greater than ten. 

Consider a sequence a) = blb& l l 0, where bi ~10, 11. A method to construct 
from this given sequence a new sequence ala2a3 l . l was proposed by Toeplitz 
(see Jacobs and Keane [2-j): 

The sequence blb2b3 l l l is written down, leaving a gap between every two 
symbols: 

al a2 a3 a4 a5 a6 a7 ’ l ’ 

b; bz bs b, 

Now the sequence blb2b3 l l l is filled into the gaps, leaving free every second gap. 
This last step is repeated ad infinitum, yielding the new sequence 

T(o)=bbbbbbbbbbbbbbbbb l -*. 11213241536274819 

In [S] it is shown that T(Ol0101. l l ) is a sequence of bounded repetition, i.e. 

only subwords ww of bounded length can occur. In particular, only subwords ww 
where the length of w is 1,3 or 5 occur. 

The sequence 010101 l . . is in some sense the base of the binary number 
system: If (n)2 = s, l 9 l slso, the digits Sk form the sequence 02” 12k02k 12* l 9 l if n 
~11s through the nonnegative integers. 

There is another way to encode the integers by 0 and 1, the Gray code. A Gray 
code is an encoding of the integers as sequences of bits with the property that 
representations of adjacent integers differ in exactly one binary position. See 
[1,4]. We restrict our considerations to the sttrndard Gray (or binary reflected) 
code: If ()z)~~ = u, l . l uluo denotes the Gray code representation of n, then the 
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digits uk form the sequence 02” 12k*‘02”*‘X2k+’ l l 9 if n runs through: rhc rs~nega- 

ti& integers. So one can consider the sequence 011001100 - - - 8s the lx& 

sequence for the Gray code. In this note we are going to prove: 

Theorem 1. The sequence c102a3 - - l = 00101100 l l l obtained from the basic 
sequence of the Gray code by means of t&e construction of Toeplitz is of bounded 
repetition. In particzdar, only subwords ww where the Zength of w is 1,2,3 or 5 
occur. 

As an example a3, 9 9 l as8 = u3c, 9 . 9 aa = 01011. 

2. Praof of Theorem 1 

Let p(n) be defined by p(n)- 1 if n= 1 (mod 4) or n = 2 (mod 4) and p(n) = 0 
otherwise. Equivalently, 

p(n) = !(I -(-1))‘““’ . 

or, if (n), = u,, l l - uIuOr then p(n)= u,,+ u1 (mod 2). It is not hard to establish the 
following fact: If (n)? = w 10’ and w is the binary representation of m, then 
a, = p(m). The last two digits of w = wrm determine a,: u.,, = o + T (mod 2). 

Since azaja6 - ’ ’ = a&a3 ’ ’ ‘, it is clear that if the subword ww with Iwl = n is 
impossible, then the subword ww with iwl= 2n is also impossible. So we prove 
that the subword ww is impossible for the length n of w : 

(1) n =4: (2) n =6,10; (3) n=7; (4) n =9; (5) n =ll; (6) nM3, n odd. 
(1) Assume ak+1”‘ak+j=a&+5”’ ak+,andlet i~{k+l,k+2}beoddXhen 

u 1+4 = a,, which is impossible. 
(2) Assume ak +, l l * ak +6 = ak+, * - l akt12 and let iE{k+l, k+2} be odd. Then 

a I *h - -a, and ai+,=ai,l; it is impossible that both equalities are fulfilled. For 
n = 10 the argument is similar. 

(3) If ak+l •“akt7=ak+1~‘.‘a&~l~and k= 16m + i, 0~ i 6 15, a careful check 
of al! 16 possibilities for i gives the proof. 

(4) Similar as in (3), a check of all 32 possibilities for i modulo 32 gives the 
proof. 

(5) The same argument as in (4) can be applied. 
(6) Assume a&+1 ’ ’ - ak+n = ak +n +l ’ ’ l %tZn+l and let i E 

ii<* + 1, k + 2. k + 3, k + 4) be the number with i = 2 (mod 4). Since n + i is odd, we 
find t;. qf qai +ZQi ,,q +,a, +8 is either abbaa or aa3ba with u E (0, 1). In both cases 
is Ui = ai.+s, which is impossible. 

3. Further results 

Let n,(k) be the number of l’s in a, - l l ak. For the sequence ‘~(0101 l l l ) the 
corresponding numbers have interesting properties according to the<, binary rep- 
resentation of k [S]. The same is true for the numbers n,(k). ’ 

First we give an estimate for the numbers nJ&). 
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Thearem 2. nI(k)=$k+O(lOg k). 
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PM& The sequence b&b3 l l l =OllO() l l . has the pr0perty that the number 0f 
ones in the first k places is #k + O(1). The f’ust k places of Q~Q~Q~ l . . O@ involve 

team from (%%!g k) Of the interhved sequences, and each interleaved sequence 
can only contribute O(1) to the error tern.. 

Theorem 3. 

q(k) = c ([k/2’ +;J + [k/2i +$J) 
ia 

= ig [k/2’ -r-y + c ([k/2’ +zj - Lk/2’ +#. 
iL=3 

Proof. Apply elementary counting arguments. 

Theorem 4. n,(k) = [ikf + [ik+$ -B,(l, k)+B,(ll, k)+B,(lOl, k)+B,(llO, k) 
where BJw, k) denotes the number of occurrences of w as a subword of the binary 
representation of k with the convention that w is completed oc? the boundaries 
by zeroes (which is in this case important for w = 110). ‘V 

proof.. 9 

nl = -[$k+_:J+ c [k/2’+$J-[~k+~J+[~k+QJ-[;k+~J 
i-1 

+[ik+iJ+ c ([k/2’+$J-[k/2’+:J) 
i*l 

+ c ([k/2’ +$J - lkJ2’ +U). 
i2=1 

It is known [3,6,7 J that the first sum equals k - B,(l, k) + B2( 11, k), that the 
second sum equals B&01, k) and that the third sum equals &(llO, k). Further- 
more 

k- [$k+iJ - [$k+;J + lik+&J - l$k+;] + [+k+iJ 

= k- [$kJ - [:k+$] -t- [ikJ - [$k] + [$kJ = lik+;j + l$kJ. 

Remark. The Toeplitz construction scheme is, i*n some sense, a binary scheme. 
One could consider a Gray code scheme: 

a5 45 a7 a8 a9 al0 l l l 

b3 b, bs 

b2 13 

h 

I sequences acts as follows: take one, skip two, take two, Each &’ the interleaved 
skip two, take two, etc. 



116 Ii. l+untinger 

PI 

PI 

r31 

r41 

151 

bl 

VI 

P. Flajoiet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 
(1980) 142-158. 
K. Jacobs and M. Keane, 0-1-Sequence9 of Toeplitz type, Z. Wahrscheinlichkeitstheorie Vexw. 
Gebiete 13 (1969) 123-131. 
P. Kirschenhofer, Subblock occurrences in the q-ary representation of n, preprint, SIAM J. 
Algebraic Discrete Methods (1983). to appear. 
D.E. Knuth, The Art of Computer Programming, Vol. 2,2nd ed. (Addison-Wesley, Reading, MA, 
1980). 
H. Prodinger and F.J. Urbanek, Infinite O-l-sequences without long adjacent identical blocks, 
Discr. Math. 28 (1979) 277-289. 
H. Prodinger. Generalizing the sum of digits function, SIAM J. Algebraic Discrete Methods 
3 (1982) 35-42. 
H. Prodinger, Subblock occurrences in representations of integers, preprint, TU Wien (1981). 


