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Abstract

Paths that consist of up-steps of one unit and down-steps of k
units, being bounded below by a horizontal line −t, behave like t+1
ordered tuples of k-Dyck paths, provided that t ≤ k. We describe
the general case, allowing t also to be larger. Arguments are bijective
and/or analytic.

1 Folklore results about k-Dyck paths

A Dyck path consists of up-steps and down-steps, one unit each, starts at
the origin and returns to the origin after 2n steps, and never goes below
the x-axis. The enumeration involves the ubiquitous Catalan numbers [12].
The family of k-Dyck paths is defined similarly, but the down-steps are
now by k units in one step. Practically every book on combinatorics has
something about this; we only give two citations: [1, 4]. The generating
function y = y(z) = yk(z) of these objects, according to length (the number
of steps) can be found by a first return to the x-axis decomposition:

y = 1 + (zy)k · z · y = 1 + zk+1yk+1,

where the last z represents the down-step that brings the path back to
the x-axis for the first time. The Figure 1 describes this readily; the term
‘1’ refers to the empty path (of length 0). (An equivalent concept is the
family of (k + 1)-ary trees; there are bijections between paths and trees,
and various parameters translate accordingly.)

One can only return to the x-axis after a multiple of k + 1 steps, as
each down-step requires k up-steps for compensation. Consequently we
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Figure 1: The decomposition of generalized Dyck paths for k = 2. Reading
from left to right, the decomposition leads to xyxyxy.

may write x = zk+1. Furthermore we set y = 1 + w, making the equation
amenable to the Lagrange inversion:

w = x(1 + w)k+1,

and we can compute the coefficients of w;

[xn]w =
1

n
[wn−1](1 + w)(k+1)n =

1

n

(
(k + 1)n

n− 1

)
.

Now we compute

[xn]yj =
1

2πi

∮
dx

xn+1
(1 + w)j

=
1

2πi

∮
dw(1 + w)(n+1)(k+1)

wn+1
(1 + w)j

1− kw
(1 + w)k+2

= [wn](1− kw)(1 + w)n(k+1)−1+j

=

(
n(k + 1)− 1 + j

n

)
− k
(
n(k + 1)− 1 + j

n− 1

)
=

j

(k + 1)n+ j

(
(k + 1)n+ j

n

)
;

we will use these coefficients of powers of y = yk(z) in the next section. The
contour is a small circle in the x-plane; the substitution from x to w does
not change the winding number. Such computations are quite common in
the context of lattice paths and/or trees.

2 kt-Dyck paths

Selkirk [11] introduced an extra parameter t to the family of k-Dyck paths.
The paths might go below the x-axis, but never go below the horizontal
line −t.
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Figure 2: A 33-Dyck path: down-steps of 3 units and bounded below by the
line −3.

The enumeration of kt-Dyck paths is as follows [11]:

Theorem 1 For 0 ≤ t ≤ k, the number of kt-Dyck paths of length (k+1)n
is given by

t+ 1

(k + 1)n+ t+ 1

(
(k + 1)n+ t+ 1

n

)
.

Equivalently, the generating function of kt-Dyck paths by length is given by
yt+1.

That yt+1 has indeed these coefficients was discussed in the previous section.
It also enumerates ordered (t+1)-tuples of k-Dyck paths, and the bijection
in [11] is between these two families of objects. It is to be noted that
[6] contains somewhat equivalent statements in the language of (k+ 1)-ary
trees, and instead of a boundary line, the nodes are coloured, and the colour
of the root plays a role similar to the t in kt-Dyck paths. We report this
information from [11].

In the present note we want to look at this again, but we also want to
explain what happens if the condition 0 ≤ t ≤ k is no longer satisfied, i.e.,
if t > k is allowed. The generating function is no longer yt+1, and has to
be replaced by something more complicated.

But let us start with some bijective arguments. While we consider 3-
Dyck paths in the following figures, the illustrations are representative for
other values of k as well.

We lift up a kt-Dyck paths by t units and add t up-steps in the beginning,
as can be seen in Figure 2. The resulting path is a k-Dyck path, but does
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Figure 3: The path from Figure 2, lifted up 3 units, with a sequence of
up-steps in the beginning.

not end on level 0, but rather on level t. It is classical (see [4, page 321])
that these paths have generating function ztyt+1, thanks to a decomposition
that is sketched in Figure 4. The first part, according to this decomposition,
ends, where the x-axis (=level 0) is visited for the last time. After an up-
step, the second part starts and ends when the level 1 is visited for the last
time, and so on. All these t + 1 parts are k-Dyck paths themselves, and
altogether t up-steps have been identified.

Figure 4: The path from Figure 3, decomposed.

Removing t extra up-steps, we are at the generating function yt+1 again,
and the decomposition gives us t+ 1 (ordered) k-Dyck paths. In the exam-
ple, we get 4 paths, see Fig. 5:

The paper [11] provides the same decomposition into (t+ 1) k-Dyck paths.
We hope that our alternative description is natural and easy to understand.

Since in this running example, two copies of the empty path appear, we
provide an additional example:
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, ε, ε,

Figure 5: Decomposed into 4 paths; the second and third paths are the
empty path ε.

Figure 6: A path for k = 3 and its decomposition.

Observe that the operation “shifting up the path by t units” makes the
old origin the first point where the level t is reached. In the beginning, there
are the t extra up steps; the new origin is at the left end of these added
steps. If t ≤ k this is indeed the only option to reach this level for the first
time without going below the x-axis by using a down-step.

If t is arbitrarily large, this is no longer true: We can “live” in the strip
with boundaries 0 and t−1, end at the highest level, and make one up-step
to reach the kt-path. Fig. 7 is a drawing explaining this.

The decomposition of k-Dyck paths ending on level t into F and G (as
shown in Figure 7) is canonical: G starts when the level t has been reached
for the first time, and what comes before is called F ; this F ends with an
up-step, and the part before “lives” in the strip 0..t− 1.

So it is evident that for general t the first part F has more freedom. In
the next section we will use generating functions to understand the roles of
F and G better. In particular, the length of the F may vary now.
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Figure 7: The path has a first part F and a second part G. The length of
F will later be called J and analyzed for k = 1.

3 Generating functions

At the moment, we leave the bijective arguments and go back to the original
question about k-Dyck paths with the negative boundary −t. In order to
obtain the relevant generating functions, we also introduce (temporarily)
an upper boundary at h. This means that we consider paths, living in the
strip −t..h. This has the advantage that the generating functions that will
appear are rational. We consider generating functions ϕi(z), where i marks
the level of the endpoint;

ϕi(z) =
∑
n≥0

zn[number of k-Dyck paths of length n,
bounded by −t and h, ending on level i].

The recursion ϕi = zϕi−1 + zϕi+k + [[i = 0]], provided all indices are
within the interval −t..h, is easy to understand; if one ends on level i, one
must have been at level i− 1 or at level i+ k before the last step. This is
best written as a linear system

1 0 0 . . . 0 −z . . .
−z 1 0 0 . . . 0 −z . . .
0 −z 1 0 0 . . . 0 −z . . .
0 0 −z 1 0 0 . . . 0 −z . . .

...

...
0 0 0 0 0 0 . . . 0 −z 1





ϕ−t
ϕ−t+1

ϕ−t+2

...
ϕh−2
ϕh−1
ϕh


=



0
0
0
1
0
0
0


The entry 1 on the righthand side corresponds to the function ϕ0. Let
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Dm be the determinant of the matrix with m rows (and columns). We find
by expanding along the first column, say, the recursion

Dm = Dm−1 − zk+1Dm−k−1, D0 = D1 = · · · = Dk = 1.

The solution is

Dm =
∑

0≤`≤m
k

(
m− k`

`

)
z(k+1)`(−1)`.

This can be proved by induction on m or by other methods (possibly by the
use of Lambert’s and Lagrange’s trinomial equation; see [5], but this has
not been investigated). For k = 1, these polynomials are sometimes called
Fibonacci polynomials and appear e. g. in [3]; this highly cited paper deals
with the height of planar trees, and this is equivalent to the height of Dyck
paths. For k = 2, they appear in [10] when computing generating functions
related to 2-Dyck paths with a boundary. A general reference about this
method is [8].

We want to link the polynomials Dm to the generating function y = yk:
The characteristic equation for the sequence Dm is λk+1 = λk − zk+1.
The equation satisfied by y is, as discussed in the introductory section,
y = 1 + zk+1yk+1. Upon setting λ = 1/y, we see that this is the same
equation. Consequently Dm has an explicit expression

Dm = αy−m +

k∑
i=1

βiρ
m
i ,

where the ρi are the other roots of the characteristic equation. If one now
takes a limit Dm+j/Dm for m → ∞ and fixed j the contributions coming
from the other roots will disappear, with the result y−j . We will use this
now:

According to Cramer’s rule to solve the linear system of equations, we
find

ϕi =
Dtz

iDh−i

Dh+t+1
, 0 ≤ i ≤ h

and

ϕ−i =
Dhz

iDt−i

Dh+t+1
, 0 ≤ i ≤ t.

Since we do not need the upper boundary at level h, we push it to infinity:

lim
h→∞

Dtz
iDh−i

Dh+t+1
= Dtz

iyi+t+1.
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We are only interested in the instance i = 0, with the result Dty
t+1. The

quantity ϕ(0) = yk;t, with lower boundary −t and upper boundary ∞
(=no upper restriction) is the generating function of kt-Dyck paths. So, we
obtained for the enumeration of kt-Dyck paths:

yk;t = Dty
t+1 =

∑
0≤`≤ t

k

(
t− k`
`

)
z(k+1)`(−1)` · yt+1

k .

(The summation is over all integers ` satisfying the inequalities 0 ≤ ` ≤
t/k.) In the last expression, we explicitly wrote y = yk to emphasize the
dependency of the generating function on the parameter k. This explains
once again that for 0 ≤ t ≤ k we get the simple result yt+1. In general, the
generating function is given by

yk;t(z) =
∑

0≤`≤ t
k

(
t− k`
`

)
z(k+1)`(−1)`

×
∑
n≥0

t+ 1

(k + 1)n+ t+ 1

(
(k + 1)n+ t+ 1

n

)
z(k+1)n.

The number of kt-Dyck paths of length (k + 1)n is then given by

[z(k+1)n]Dty
t+1 =

∑
0≤`≤ t

k

(
t− k`
`

)
(−1)`

× t+ 1

(k + 1)(n− `) + t+ 1

(
(k + 1)(n− `) + t+ 1

n− `

)
.

The polynomial Dt has alternating coefficients, and it is quite likely that
there is some sort of an inclusion-exclusion principle underlying.

The polynomial Dt does not have a combinatorial meaning itself, but
we may write

zt

Dt
yk;t(z) = ztyt+1.

The generating function zt

Dt
has a combinatorial meaning: In the linear

system, first replacing t by 0 and then h and i by t− 1, leads to zt−1

Dt
, and

it counts the k-Dyck paths living in the strip 0..h−1, ending at the highest
level h− 1. The function zt

Dt
differs only by an extra factor z, representing

an up-step, touching the level h for the first time. This is exactly the
decomposition as given in Fig. 7.

Paths ending on their highest level appear in [2, 7].
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It is interesting to compare [z(k+1)n]yk;t(z) and [z(k+1)n]yk(z)t, by tak-
ing their quotient. This is

∑
0≤`≤ t

k

(
t−k`
`

)
(−1)` t+1

(k+1)(n−`)+t+1

(
(k+1)(n−`)+t+1

n−`
)

t+1
(k+1)n+t+1

(
(k+1)n+t+1

n

) .

Taking the limit of this for n→∞ (only Stirling’s formula for factorials is
required), we get ∑

0≤`≤ t
k

(
t− k`
`

)
(−ρ)`,

with

ρ =
kk

(k + 1)k+1
.

This sum is indeed = 1 for 0 ≤ t ≤ k, but takes smaller values, when t gets
larger in relation to k. This matches intuition that, when t is large, the
first part of the path that does not (yet) hit the level t tends to be longer,
and the contribution of the rest, which is measured against [z(k+1)n]yk(z)t,
tends to be smaller.

Figure 8: k = 10, and t is growing

4 Asymptotics

We want to study the parameter J = j as in the drawing of Fig. 7. It is
given by j = t + (k + 1)`, for some `. Recall that each path is uniquely
decomposed by the F -part, until the level t has been reached for the time,
and the remainder, the G-part.
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In order to be able to do explicit calculations, we restrict ourselves to
the classical case k = 1 of Dyck paths. (The case of general k, which seems
to be less combinatorial, and more analytical, is left as a challenge.) Then
the recursion of second order Dm = Dm−1 − z2Dm−2 admits the solution

Dt(z
2) = Dt(x) =

1− ut+1

1− u
1

(1 + u)t
,

with the (classical) substitution x = u
(1+u)2 , borrowed from [3].

The parameter J has an automatic contribution of t, which we can
add later. In our setting, we are interested in J = t + 2`, and we are
concentrating on `. This means that we consider the random variable J−t2
and call it the parameter of interest. The advantage of this procedure is
that now we only have generating functions in z2, for which we write x.

The probability generating function of interest is

P (x,w) :=
[xn] 1

Dt(xw)G(x)

[xn]C(x)t+1
,

with

C(x) =
1−
√

1− 4x

2x
= 1 + u

the generating function of the Catalan numbers, enumerating Dyck paths
by half-length: the quantity in the denominator [xn]C(x)t+1 is the total
number of objects (not counting the additional up steps in the beginning);
the numerator is the unique decomposition into the F -part and the G-part.
An additional variable w is used to count the length of the F -part.

The number of paths of length 2n+ t with parameter J = 2s+ t is then
given as t+ 2[xnws]P (x,w).

We still need to compute G(x), the generating function of paths not
going below the line −t and ending on the x-axis again.

This can be computed by the linear system as a quotient of the usual
determinants: Consider paths bounded below by −t, and above by i.

lim
i→∞

DtDi

Di+h+1
= lim
i→∞

1− ut+1

1− u
1

(1 + u)t
1− ui+1

1− u
1

(1 + u)i/
1− ui+t+2

1− u
1

(1 + u)i+t+1

=
1− ut+1

1− u
1

(1 + u)t
(1 + u)i+t+1

(1 + u)i
=

1 + u

1− u
(1− ut+1).
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As a check, we get the product of the two components F and G

1− u
1− ut+1

(1 + u)t · 1 + u

1− u
(1− ut+1) = (1 + u)t+1 = C(x)t+1,

as it should.

We study now
1

Dt(xw)
G(x)

using a second variable w to count the parameter of interest. We compute:

d

dw

1

Dt(xw)

∣∣∣
w=1

= x
d

dx

1

Dt(x)
= x

du

dx

d

du

1

Dt(x)

= − u

(1 + u)2
(1 + u)3

1− u

(
(1− u)(1 + u)t

1− ut+1

)2
d

du
Dt(x)

= − u(1 + u)t

(1− ut+1)2
(1 + u)(1− ut)− t(1− u)(1 + ut)

1− u

and further

d

dw

1

Dt(xw)

∣∣∣
w=1
· 1 + u

1− u
(1− ut+1)

= − u(1 + u)t

(1− ut+1)2
(1 + u)(1− ut)− t(1− u)(1 + ut)

1− u
1 + u

1− u
(1− ut+1)

= −u(1 + u)t+1

1− ut+1

(1 + u)(1− ut)− t(1− u)(1 + ut)

(1− u)2
.

We do not try to simplify this any further, but expand it around u = 1,
which corresponds to the singularity x = 1

4 , which is relevant for Dyck-
paths. We are in the regime called “sub-critical”, compare [4], where the
singular expansion of numerator and denominator is of the same type:

a0 + a1
√

1− 4x+ . . .

b0 + b1
√

1− 4x+ . . .
,

whence the asymptotic expansion of the parameter J of interest is given
by a1

b1
. One does not need to switch back to the x-world, since this quotient

can also be obtained via
a′1
b′1

, in

a′0 + a′1(1− u) + . . .

b′0 + b′1(1− u) + . . .
.
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The reader might recall that
√

1− 4x = 1−u
1+u , and this is how the singularity

x = 1
4 translates into u = 1 and vice versa. A recent application of this

(including a proof of a conjectured limiting distribution) is in [9]. In our
instance, we are led to

1
32tt(t− 1)− 1

62tt(t− 1)(t+ 1)(1− u) + . . .

2t+1 − 2t(t+ 1)(1− u) + . . .
,

and the quotient of interest is

1
62tt(t− 1)(t+ 1)

2t(t+ 1)
=
t(t− 1)

6
.

Multiplying this by 2, in order to switch from half-length to length, and
adding the fixed contribution t leads to the average value of J :

t+ 2
t(t− 1)

6
=
t(t+ 2)

3
.

In this subcritical regime it is also relatively easy to determine the dis-
crete limiting distribution. We start from

1
Dt(xw)G(x)

C(x)t+1
;

the quotient G(x)/C(x)t+1 does not depend on the parameter, and can
thus be replaced by its limit at the singularity x = 1

4 , or, easier at u = 1:
(This simplification stems from the fact that the limit of a product is the
product of limits, and, more generally, this holds for the local expansions
as well.)

lim
u→1

G(x)

C(x)t+1
=

2(t+ 1)

2t+1
=
t+ 1

2t
.

Hence, the discrete limiting distribution is given by the (probability) gen-
erating function

pt(u) =
t+ 1

2t
1− u

1− ut+1
(1 + u)t.

One can even read off coefficients explicitly: (The contour is again a small
circle in the x-plane, and since x ≈ u for small x, the curve also winds
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around the origin exactly once in the u-plane.)

[xm]pt(u) =
t+ 1

2t
1

2πi

∮
dx

xm+1
pt(u)

=
t+ 1

2t
1

2πi

∮
du(1− u)(1 + u)2m+2

um+1

1− u
1− ut+1

(1 + u)t

=
t+ 1

2t
[um]

(1− u)2

1− ut+1
(1 + u)2m−1+t

=
t+ 1

2t

∑
λ≥0

[(
2m− 1 + t

m− λ(t+ 1)

)

− 2

(
2m− 1 + t

m− 1− λ(t+ 1)

)
+

(
2m− 1 + t

m− 2− λ(t+ 1)

)]
.

This quantity can be interpreted as the probability that in an (almost)
infinitely long path the parameter J−t2 has value m.

Figure 9: Limiting distribution: t = 7, t = 10, t = 14
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