MORTENSON'S IDENTITIES AND PARTIAL FRACTION DECOMPOSITION

HELMUT PRODINGER

Abstract. We reprove two identities of Mortenson by using not more than partial fraction decomposition.

1. Introduction

Mortenson [2, 3] proved the two identities

$$
\begin{gather*}
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k}\left(H_{n+k}+H_{m+k}-2 H_{k}\right)=0 \tag{1}\\
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k}\left(1+k\left(H_{n+k}+H_{m+k}-2 H_{k}\right)\right)=1+n+m \tag{2}
\end{gather*}
$$

Here, $1 \leq m \leq n$ and $H_{n}=\sum_{1 \leq k \leq n} \frac{1}{k}$ are harmonic numbers.
The goal of the present note is to show that the particularly simple technique, presented in [4], works here as well. Because of a formula, e. g., discussed in [4], identity (2) is equivalent to the more appealing

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} k\left(H_{n+k}+H_{m+k}-2 H_{k}\right)=n+m
$$

Compare also with the paper [5].
The method consists of the following steps:

- A rational function, of the form

$$
\frac{(z+1) \ldots(z+n)}{z(z-1) \ldots(z-n)} \cdot Y
$$

will undergo partial fraction decomposition.

- The resulting equation will be multiplied by z, and the limit $z \rightarrow \infty$ will be performed.
- We write harmonic numbers as

$$
H_{k}=\sum_{j \geq 1}\left[\frac{1}{j}-\frac{1}{j+k}\right]=\sum_{j \geq 1} \frac{k}{j(j+k)} .
$$

We use an individual term $\frac{z}{j(j+z)}$ as part of the rational function. The resulting identities will be summed over all $j \geq 1$.

- To obtain the final result, these infinite series have to be evaluated. We use creative telescoping, as popularized in the book [1] to do that.

Factorials are, whenever necessary, defined by the Gamma function. In particular, $1 /(-n)$!, for $n \in \mathbb{N}$, must be interpreted, as usual, by 0 .

2. The first identity

The two results

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} H_{k}=2 H_{n}, \\
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} H_{n+k}=2 H_{n},
\end{aligned}
$$

appear already in [4], so let us concentrate on $(0 \leq m \leq n)$

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} H_{m+k}
$$

Consider

$$
A:=\frac{(z+1) \ldots(z+n)}{z(z-1) \ldots(z-n)} \frac{m+z}{j(j+m+z)} .
$$

Then partial fraction decomposition results in

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} \frac{m+k}{j(j+m+k)} \frac{1}{z-k} \\
&=A-\frac{(j+m-1)!^{2}}{(j+m-n-1)!(j+m+n)!} \frac{1}{j+m+z}
\end{aligned}
$$

Multiplying this by z and then performing the limit $z \rightarrow \infty$ leads to

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} \frac{m+k}{j(j+m+k)} \\
& \quad=\frac{1}{j}-\frac{(j+m-1)!^{2}}{(j+m-n-1)!(j+m+n)!}
\end{aligned}
$$

Summing over $j \geq 1$, we get

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} H_{m+k} \\
&=\sum_{j \geq 0}\left[\frac{1}{j+1}-\frac{(j+m)!^{2}}{(j+m-n)!(j+1+m+n)!}\right]
\end{aligned}
$$

Denoting the term in the sum that still needs to be evaluated by $F(n, j)$, we find

$$
F(n+1, j)-F(n, j)=G(n, j+1)-G(n, j),
$$

with

$$
G(n, j)=\frac{2}{n+1} \frac{(j+m)!^{2}}{(j+m-n-1)!(j+1+m+n)!}
$$

(Once this is known, it is trivial to check.)
We need the summatory functions

$$
S(n)=\sum_{j \geq 0} F(n, j)
$$

m is always treated as a parameter. We find by summing

$$
S(n+1)-S(n)=\lim _{J \rightarrow \infty}(G(n, J)-G(n, 0))=\frac{2}{n+1}, \quad n \geq m
$$

so that

$$
S(n)-S(m)=2\left(H_{n}-H_{m}\right)
$$

The instance $S(m)=2 H_{m}$ is already known, as mentioned, and we get for $0 \leq m \leq n$

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} H_{m+k}=2 H_{n}
$$

Putting the individual evaluations together, we get identity (1).

3. The second identity

Consider the partial fraction decomposition

$$
\begin{aligned}
& \frac{(z+1) \ldots(z+n)}{(z-1) \ldots(z-n)} \frac{m+z}{j(j+m+z)} \\
& \quad=\sum_{k=1}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} \frac{k(m+k)}{j(j+m+k)} \frac{1}{z-k} \\
& \quad \quad-\frac{(m+j-1)!(m+j)!}{(j+m-n-1)!(m+n+j)!} \frac{1}{j+m+z}+\frac{1}{j}
\end{aligned}
$$

Again, multiplying this by z and taking the limit $z \rightarrow \infty$ results in

$$
\begin{aligned}
& \sum_{k=1}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} \frac{k(m+k)}{j(j+m+k)} \\
&=\frac{n(n+1)}{j+1}-1+\frac{(m+j)!(m+j+1)!}{(j+m-n)!(m+n+j+1)!}
\end{aligned}
$$

which we sum:

$$
\begin{aligned}
& \sum_{k=1}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} k H_{m+k} \\
&=\sum_{j \geq 0}\left[\frac{n(n+1)}{j+1}-1+\frac{(m+j)!(m+j+1)!}{(j+m-n)!(m+n+j+1)!}\right]
\end{aligned}
$$

Denoting the term in the bracket of the right-hand side by $F(n, j)$, we get

$$
n F(n+1, j)-(n+2) F(n, j)=G(n, j+1)-G(n, j)+2,
$$

with

$$
G(n, j)=-2 \frac{(j+m)!(j+m+1)!}{(j+m-n-1)!(j+m+n+1)!},
$$

which is again routine to check. Consequently we find for the summatory functions the recursion
$n S(n+1)-(n+2) S(n)=\lim _{J \rightarrow \infty}[G(n, J)+2 J-G(n, 0)]=2 n(n+2)-2 m$.
The recursion is valid for $n \geq m$. However, the special case

$$
S(m)=2 m(m+1) H_{m}-m^{2}
$$

is already known, see [4], and therefore we get in general

$$
S(n)=2 n(n+1) H_{n}-n^{2}-n+m .
$$

This is easy to check by induction.
So we have the general formula for $0 \leq m \leq n$

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(-1)^{n-k} k H_{m+k}=2 n(n+1) H_{n}-n^{2}-n+m
$$

To evaluate Mortenson's second sum, we add the ingredients
$2 n(n+1) H_{n}-n^{2}-n+m+2 n(n+1) H_{n}-n^{2}-4 n(n+1) H_{n}+2 n(n+1)=m+n$ and are done.

References

[1] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. $A=B$. A K Peters Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth, with a separately available computer disk.
[2] E. Mortenson. Supercongruences between truncated ${ }_{2} F_{1}$ hypergeometric functions and their Gaussian analogs. Trans. Amer. Math. Soc., 335 (2003), 139-147.
[3] E. Mortenson. On differentiation and harmonic numbers. Utilitas Mathematica, 80 (2009), 53-57.
[4] H. Prodinger. Human proofs of identities by Osburn and Schneider. INTEGERS, 8 (2008), paper A10 (8 pages).
[5] H. Prodinger. Identities involving harmonic numbers that are of interest for physicists. Utilitas Mathematica, 83 (2010), 291-299.

Helmut Prodinger, Department of Mathematics, University of Stellenbosch, 7602 Stellenbosch, South Africa

E-mail address: hproding@sun.ac.za

