
ON THE m-ENUMERATION OF MAXIMUM AND LEFT-TO-RIGHT
MAXIMA IN GEOMETRICALLY DISTRIBUTED WORDS

HELMUT PRODINGER

Abstract. Words with letters being natural numbers equipped with geometric proba-
bilities are counted using a novel idea of Cichon and Macyna’s, namely by sending the
letters at random to one of m subwords, where the parameters maximum and number of
left-to-right maxima are counted as usual. The final result is the sum of the m individual
results. A technique is described how to translate explicit orginal formulæ as alternat-
ing sums into similar sums including the parameter m. The technique of choice for the
asymptotic enumeration of moments is Rice’s method.

1. Introduction

Cichon, together with his coauthor Macyna, had the seminal idea [1] to generalize ap-
proximate counting to approximate counting with m counters.

We briefly explain approximate counting, as in the original version [2]. A counter is
initially set to 1; when new items (to be counted) arrive, the counter either keeps its value
or is increased by 1, according to a random experiment with geometric probability: if the
counter value is k, then an increase happens with probability 2−k. After n random incre-
ments, the counter value is approximately log2 n (much more precise results are known),
so that it can be used to estimate the number of random items.

The new version uses m counters, and chooses for each incoming item one of these
counters at random (with probability 1

m
) where it is dealt with as usual. The result of the

procedure is the sum of the individual results of the m counters. This total count has been
analyzed in [10, 4, 7] and behaves on average like m log2 n.

This fundamental idea should, however, not be restricted to approximate counting, as
there are other important parameters which have been analyzed under the assumption
that random words of length n are given. The letters are typically integers, and integer k
appears with the geometric probability pqk−1, where p+ q = 1.

We will deal with 3 such parameters in this paper, namely the maximum, and the number
of left-to-right maxima in the strict/weak sense. Recall that a letter in a word is a left-
to-right maximum in the strict/weak sense if it is strictly larger or just larger or equal
than all the letters that have been seen so far. Here, we assume again m devices to which
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2 H. PRODINGER

each incoming symbol is randomly associated. Each device computes its maximum resp.
left-to-right maximum, and at the end the results are added.

Intuitively, we assume that each device sees roughly n/m letters, and since each param-
eter has typically an average of c · log n, we should get a result of the form c ·m log n

m
. This

will be made precise in the present paper.
Here is the general set-up. Let Pn,l be the probability that the parameter of interest is

l after seeing n random letters, and Pn,l the probability that, in the m-model, the total
(accumulated) value is l. This follows a multinomial distribution:

PN,l = m−N
∑

n1+···+nm=N

(
N

n1, . . . , nm

) ∑
l1+···+lm=l

Pn1,l1 · · ·Pnm,lm .

The first two moments are in all cases computed via probability generating functions.
Let

Gn(u) =
∑
l≥0

Pn,lu
l and Gn(u) =

∑
l≥0

Pn,lu
l.

It is beneficial to work with exponential generating functions

F (z, u) =
∑
n≥0

Gn(u)
zn

n!
and F(z, u) =

∑
n≥0

Gn(u)
zn

n!
.

A simple rearrangement gives us

F(mz, u) =
(
F (z, u)

)m
.

Let us denote differentiations with respect to u by a prime. Then

F′(mz, 1) = m
(
F (z, 1)

)m−1
F ′(z, 1) = mez(m−1)F ′(z, 1)

and

F′′(mz, 1) = mez(m−1)F ′′(z, 1) +m(m− 1)ez(m−2)
(
F ′(z, 1)

)2
.

We use the following notations for moments:

En = n![zn]F ′(z, 1), En = n![zn]F′(z, 1),

E(2)
n = n![zn]F ′′(z, 1), E(2)

n = n![zn]F′′(z, 1).

Comparing coefficients, we get

EN = m1−N
N∑
n=1

(
N

n

)
(m− 1)N−nEn

and

E
(2)
N = m1−N

N∑
n=1

(
N

n

)
(m−1)N−nE(2)

n +(m−1)m1−N
N∑
n=1

(
N

n

)
(m−2)N−n

n∑
j=0

(
n

j

)
EjEn−j.
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In all our examples, there is a formula

En =
n∑
k=1

(
n

k

)
(−1)kω(k).

Therefore

EN = m1−N
N∑
n=1

(
N

n

)
(m− 1)N−n

n∑
k=1

(
n

k

)
(−1)kω(k)

= m1−N
N∑
k=1

(
N

k

)
(−1)kω(k)

N∑
n=k

(m− 1)N−n
(
N − k

n− k

)

=
N∑
k=1

(
N

k

)
(−1)kω(k)m1−k.

There is also

E(2)
n =

n∑
k=1

(
n

k

)
(−1)kθ(k).

Here, the translation is more complicated. First,

n∑
j=0

(
n

j

)
EjEn−j =

n∑
j=0

(
n

j

) j∑
a=1

(
j

a

)
(−1)aω(a)

n−j∑
b=1

(
n− j

b

)
(−1)bω(b)

=
n∑

a,b=1

(
n

a+ b

)(
a+ b

b

)
(−1)a+bω(a)ω(b)2n−a−b.

Second,

N∑
n=1

(
N

n

)
(m− 2)N−n

n∑
j=0

(
n

j

)
EjEn−j

=
N∑
n=1

(
N

n

)
(m− 2)N−n

n∑
a,b=1

(
n

a+ b

)(
a+ b

b

)
(−1)a+bω(a)ω(b)2n−a−b

=
N∑
n=1

(m− 2)N−n
n∑

a,b=1

(
N − a− b

N − n

)(
N

a+ b

)(
a+ b

b

)
(−1)a+bω(a)ω(b)2n−a−b

=
N∑

a,b=1

mN−a−b
(

N

a+ b

)(
a+ b

b

)
(−1)a+bω(a)ω(b)

= mN

N∑
k=1

(
N

k

)
(−1)km−k

k−1∑
j=1

(
k

j

)
ω(j)ω(k − j).
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Consequently

E
(2)
N = m

N∑
k=1

(
N

k

)
(−1)kθ(k)m−k + (m− 1)m

N∑
k=1

(
N

k

)
(−1)km−k

k−1∑
j=1

(
k

j

)
ω(j)ω(k − j).

The paper [10] has already essentially these developments, but in a less systematic way.
The further analysis depends on the specific form of ω(k) and θ(k).

We need the following abbreviations, which are traditional in this area: Q := 1/q,
L := logQ, χk = 2πik

L
,

α =
∑
k≥1

1

Qk − 1
, β =

∑
k≥1

1

(Qk − 1)2
, and τ =

∑
k≥1

(−1)k−1

k(Qk − 1)
.

These constants appear in the local expansion around z ∼ 0 of∑
k≥1

1

Qz+k − 1
and

∑
k≥1

(
z

k

)
1

Qk − 1
.

Our asymptotic method of choice is often called Rice’s method and described in great
detail in [3]. It allows to write a sum

n∑
k=1

(
n

k

)
(−1)kω(k)

as a contour integral

− 1

2πi

∫
C

Γ(n+ 1)Γ(−z)

Γ(n+ 1 − z)
ω(z)dz

where ω(z) is an analytic extension of the sequence ω(k), and the curve of integration
includes the poles at k = 1, . . . , n and no others. Changing the contour brings the residues
outside of the curve into the game (with a negative sign), and they constitute the asymp-
totic expansion. In our application, this residue is located at z = 0. There are also poles at
z = χk (also with real part = 0) which contribute; this contribution is a Fourier series and
thus establishes a fluctuating function. It is of small amplitude since the Gamma function
decays very quickly along the imaginary axis.

There is another interesting aspect, namely that such a periodic function of mean zero,
which appears in the expected value, must be squared when computing the variance. This
function is again a periodic function, but no longer of mean zero, although this mean
is extremally small. In various earlier analyses of algorithms, it was crucial to find an
alternative representation for this tiny quantity. There is a survey article [9] about that.
One of these identities will be used in the present paper as well.

Several residues must be computed. After due preparations, this can be done nowadays
with a computer algebra system. This is in contrast with earlier efforts, e. g. [8], where
such expansions had to be performed by hand.
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2. Maximum

In the instance of the maximum (the largest letter in the word) we know from [11] and
[6] that

ω(k) =
−1

1 − qk
and θ(k) =

−2qk

(1 − qk)2
.

We must compute the residue at z = 0 of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)

−1

1 − qz
m1−z,

which is (a computer can do that)

m logQN −m logQm+
m

2
+
mγ

L
+O(N−1).

The contribution from the residues at z = χk is given by

−m
L

∑
k 6=0

Γ(−χk)e2πi·logQ
N
m =: −mδ(logQ

N
m

).

Now we look at the residue at z = 0 of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)

−2qz

(1 − qz)2
m1−z,

which is

m log2
QN − 2m logQm logQN +

2mγ

L
logQN

− m

6
+
mπ2

6L2
+
mγ2

L2
+m log2

Qm− 2mγ

L
logQm+O(N−1).

The other part of the second factorial moment requires some preparation. We have

k−1∑
j=1

(
k

j

)
1

1 − qj
1

1 − qk−j

=
1

1 − qk

k−1∑
j=1

(
k

j

)[
1

1 − qj
+

1

1 − qk−j
− 1

]

=
2

1 − qk

k−1∑
j=1

(
k

j

)
1

1 − qj
− 1

1 − qk

k−1∑
j=1

(
k

j

)

=
2

1 − qk

k−1∑
j=1

(
k

j

)
qj

1 − qj
+

2

1 − qk

k−1∑
j=1

(
k

j

)
− 1

1 − qk

k−1∑
j=1

(
k

j

)

=
2

1 − qk

k−1∑
j=1

(
k

j

)
qj

1 − qj
+

1

1 − qk

k−1∑
j=1

(
k

j

)
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=
2

1 − qk

k∑
j=1

(
k

j

)
qj

1 − qj
− 2qk

(1 − qk)2
+

2k − 2

1 − qk
.

Hence we have to compute the residue at z = 0 of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
(m− 1)m1−z

[
2

1 − qz

∑
j≥1

(
z

j

)
qj

1 − qj
− 2qz

(1 − qz)2
+

2z − 2

1 − qz

]
.

It is

m(m− 1) log2
QN +

m(m− 1)2γ

L
logQN − 2m(m− 1) logQm logQN +m(m− 1) logQN

+m(m− 1) log2
Qm−m(m− 1) logQm− 2m(m− 1)γ

L
logQm

+m(m− 1)
[1

3
+

π2

6L2
+
γ

L
− log 2

L
+
γ2

L2

]
− 2m(m− 1)

L
τ.

Collecting all the ingredients for the variance, we get

m2

12
+
m2π2

6L2
− m(m − 1) logQ 2 − 2m(m− 1)

L
τ − m2[δ2]0 + mδV (logQ

N
m

) + O(N−1),

where the periodic function δV (x) could also be expressed as a Fourier series. The quantity
[δ2]0 is the constant term in δ2(x); it is a tiny quantity and possessed an alternative form [8]:

[δ2]0 =
π2

6L2
+

1

12
− logQ 2 − 2

L
τ.

This allows to simplify the variance. We collect the results of this section.

Theorem 1. Mean and variance of the m-version of the maximum parameter of geomet-
rically distributed words satisfy

EN = m logQN −m logQm+
m

2
+
mγ

L
−mδ(logQ

N
m

) +O(N−1)

and

VN = m logQ 2 +
2m

L
τ +mδV (logQ

N
m

) +O(N−1).

Notice that the constant in the variance is very close to

mπ2

6L2
+
m

12
.

3. Left-to-right maxima in the strict sense

A left-to-right maximum in the strict sense is a letter that is strictly larger than all the
letters to the left. A probability generating function is available [8]:∏

k≥1

(
1 +

zupqk−1

1 − z(1 − qk)

)
;
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the coefficient of znuk in it is the probability that a random word of length n has k left-
to-right maxima.

From this an explicit expression for the expectation En as an alternating sum is derived,
with

ω(k) =
−p

1 − qk
.

Twice differentiating w.r.t. u, followed by u = 1 leads to the second factorial moments.
Since there are small inaccuracies in the original paper [8], we take the chance to correct
them here:

E(2)
n = 2p2

∑
0≤i<j

[
1 +

1

qi−j − 1
(1 − qi)n +

1

qj−i − 1
(1 − qj)n

]
= 2p2

n∑
k=1

(
n

k

)
(−1)k

∑
0≤i<j

[ 1

qi−j − 1
qik +

1

qj−i − 1
qjk
]
.

Therefore

θ(k)

2p2
=
∑
0≤i<j

1

qi−j − 1
qik +

∑
0≤i<j

1

qj−i − 1
qjk

= α
∑
0≤i

qik −
∑
0≤i<j

1

1 − qj−i
qjk

= α
1

1 − qk
−
∑
0≤i<j

qjk −
∑
0≤i<j

1

Qj−i − 1
qjk

= α
1

1 − qk
−
∑
0<j

jqjk −
∑
0<j

j∑
h=1

1

Qh − 1
qjk

= α + α
∑
j≥1

qjk − qk

(1 − qk)2
−
∑
j≥1

j∑
h=1

1

Qh − 1
qjk

= α− qk

(1 − qk)2
+
∑
j≥1

∑
h>j

1

Qh − 1
qjk

= α− qk

(1 − qk)2
+
∑
h≥1

1

Qh − 1

h−1∑
j=1

qjk

= α− Qk

(Qk − 1)2
+
∑
h≥1

1

Qh − 1

qk − qhk

1 − qk

= α
1

1 − qk
− Qk

(Qk − 1)2
−
∑
h≥1

1

Qh − 1

qhk

1 − qk
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= α
1

1 − qk
− Qk

(Qk − 1)2
− 1

1 − qk

∑
h,j≥1

qhk+hj

= α
1

1 − qk
− Qk

(Qk − 1)2
− 1

1 − qk

∑
j≥1

1

Qk+j − 1
.

Furthermore, we get as in the previous section

k−1∑
j=1

(
k

j

)
1

1 − qj
1

1 − qk−j
=

2

1 − qk

k∑
j=1

(
k

j

)
qj

1 − qj
− 2qk

(1 − qk)2
+

2k − 2

1 − qk
.

So we must look at the residue at z = 0 of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
2p2m1−z

[
α

1

1 − qz
− Qz

(Qz − 1)2
− 1

1 − qz

∑
j≥1

1

Qz+j − 1

]
+

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
(m− 1)p2m1−z

[
2

1 − qz

∑
j≥1

(
z

j

)
qj

1 − qj
− 2qz

(1 − qz)2
+

2z − 2

1 − qz

]
.

There are again many terms, which we decided not to display, but when computing the
variance, thanks to many cancellations, what remains is

mpq logQN −mpq logQm+
mpqγ

L
− 2m(m− 1)p2τ

L
− 2mp2(α + β) +

m2p2π2

6L2

−m(m− 1)p2 logQ 2 +
p2m2

12
+
mpq

2
− p2m2[δ2]0 +m$(log N

m
) +O(N−1).

Note that the leading term does not contain a fluctuation, since such terms also cancel
out, but that was not stated properly in [8]. Likewise, the term including α+β was missed
earlier.

The terms involving m2 are

−2p2τ

L
+
p2π2

6L2
− p2 logQ 2 +

p2

12
− p2[δ2]0,

but this is zero, as discussed earlier.

Theorem 2. Mean and variance of the m-version of the number of left-to-right maxima
(in the strict sense) of geometrically distributed words satisfy

EN = mp logQN −mp logQm+
mp

2
+
mpγ

L
−mpδ(logQ

N
m

) +O(N−1)

and

VN = mpq logQN −mpq logQm+
mpqγ

L
+

2mp2τ

L
− 2mp2(α + β)

+mp2 logQ 2 +
mpq

2
+m$(log N

m
) +O(N−1).

The Fourier coefficients of $(x) are not computed, but they can be expressed with
Γ(−χk) and Γ′(−χk).
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4. Left-to-right maxima in the weak sense

This section is a variation of the previous one; this time an element is already a left-
to-right maximum if it is larger or equal than all elements to the left of it. In [8] we
find

En =
p

q

n∑
k=1

(
n

k

)
(−1)k−1

1

Qk − 1
,

so

ω(k) =
p

q

−1

Qk − 1
.

Further,

E(2)
n = gn + hn

with

gn = [zn]
2p2

q2
z2

1 − z

∑
1≤i<j

qi+j

(1 − z(1 − qi))(1 − z(1 − qj))

and

hn = [zn]
2p2

q2
z2

1 − z

∑
j≥1

q2j

(1 − z(1 − qj))2
.

A similar computation as in the previous section leads to

gn =
2p2

q2

n∑
k=1

(
n

k

)
(−1)k

[
α

1

Qk − 1
− 1

(Qk − 1)2
− 1

Qk − 1

∑
h≥1

1

Qk+h − 1

]
.

For hn we are able to compute a more concise representation than in [8]:

hn = [zn]
2p2

q2

∑
j≥1

[
1

1 − z
− 1

Qj − 1

1

(1 − z(1 − qj))2
+

2 −Qj

Qj − 1

1

1 − z(1 − qj)

]
=

2p2

q2

∑
j≥1

[
1 − 1

Qj − 1
(n+ 1)(1 − qj)n +

2 −Qj

Qj − 1
(1 − qj)n

]

=
2p2

q2

∑
j≥1

[
1 − 1

Qj − 1
(n+ 1)

n∑
k=0

(
n

k

)
(−1)kqjk +

2 −Qj

Qj − 1

n∑
k=0

(
n

k

)
(−1)kqjk

]

=
2p2

q2

∑
j≥1

[
1 − 1

Qj − 1

n∑
k=0

(
n+ 1

k + 1

)
(k + 1)(−1)kqjk +

2 −Qj

Qj − 1

n∑
k=0

(
n

k

)
(−1)kqjk

]

=
2p2

q2

∑
j≥1

[
1 − 1

Qj − 1

n∑
k=0

(
n

k + 1

)
(k + 1)(−1)kqjk

− 1

Qj − 1

n∑
k=0

(
n

k

)
(k + 1)(−1)kqjk +

2 −Qj

Qj − 1

n∑
k=0

(
n

k

)
(−1)kqjk

]
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=
2p2

q2

∑
j≥1

[
1 +

Qj

Qj − 1

n∑
k=1

(
n

k

)
k(−1)kqjk

− 1

Qj − 1

n∑
k=0

(
n

k

)
(k + 1)(−1)kqjk +

2 −Qj

Qj − 1

n∑
k=0

(
n

k

)
(−1)kqjk

]

=
2p2

q2

n∑
k=1

(
n

k

)
(−1)k

∑
j≥1

[
Qj

Qj − 1
kqjk − 1

Qj − 1
(k + 1)qjk +

2 −Qj

Qj − 1
qjk
]

=
2p2

q2

n∑
k=1

(
n

k

)
(−1)k

∑
j≥1

(k − 1)qjk

=
2p2

q2

n∑
k=1

(
n

k

)
(−1)k

k − 1

Qk − 1
.

Therefore

θ(k) =
2p2

q2

[
α

1

Qk − 1
− 1

(Qk − 1)2
− 1

Qk − 1

∑
h≥1

1

Qk+h − 1
+

k − 1

Qk − 1

]
.

We also need this formula

k−1∑
j=1

(
k

j

)
1

Qj − 1

1

Qk−j − 1
=

2

Qk − 1

∑
j≥1

(
k

j

)
1

Qj − 1
− 2

(Qk − 1)2
+

2k − 2

Qk − 1
,

which is again very similar to a formula from the previous section.
So, for the expected value EN , we must compute the residue at z = 0 (and at z = χk) of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
m1−z p

q

−1

Qz − 1
,

which leads to

EN ∼ mp

q
logQN − mp

q
logQm+

mpγ

qL
− mp

2q
− mp

q
δ(logQ

N
m

).

For the asymptotic equivalent of E
(2)
N , we must compute the residue at z = 0 of

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
m1−z 2p2

q2

[
α

1

Qz − 1
− 1

(Qz − 1)2
− 1

Qz − 1

∑
h≥1

1

Qz+h − 1
+

z − 1

Qz − 1

]
+

Γ(N + 1)Γ(−z)

Γ(N + 1 − z)
m1−z(m− 1)

p2

q2

[
2

Qz − 1

∑
j≥1

(
z

j

)
1

Qj − 1
− 2

(Qz − 1)2
+

2z − 2

Qz − 1

]
.

Again we only display the variance which is much shorter, thanks to cancellations:

mp

q2
logQN − mp

q2
logQm+

mpγ

Lq2
− 2m(m− 1)p2τ

q2L
− 2mp2

q2
(α + β) +

m2p2π2

6q2L2
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− m(m− 1)p2

q2
logQ 2 +

p2m2

12q2
− mp

2q2
− p2m2

q2
[δ2]0 +mυ(log N

m
).

And again, there is simplification, since the term of order m2 cancels:

mp

q2
logQN − mp

q2
logQm+

mpγ

Lq2
+

2mp2τ

q2L
− 2mp2

q2
(α + β) +

mp2

q2
logQ 2 − mp

2q2
+mυ(log N

m
).

We collect the results.

Theorem 3. Mean and variance of the m-version of the number of left-to-right maxima
(in the weak sense) of geometrically distributed words satisfy

EN =
mp

q
logQN − mp

q
logQm+

mpγ

qL
− mp

2q
− mp

q
δ(logQ

N
m

) +O(N−1)

and

VN =
mp

q2
logQN − mp

q2
logQm+

mpγ

Lq2
+

2mp2τ

q2L
− 2mp2

q2
(α + β)

+
mp2

q2
logQ 2 − mp

2q2
+mυ(log N

m
) +O(N−1).

The Fourier coefficients of υ(x) are not computed, but they can be expressed with Γ(−χk)
and Γ′(−χk).

5. Conclusion

It is likely that alternative approaches, as in [4] (based on [5]) or [7] will also work here.
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