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A

We consider digital expansions with respect to complex integer bases. We derive precise information
about the length of these expansions and the corresponding sum-of-digits function. Furthermore we give
an asymptotic formula for the sum-of-digits function in large circles and prove that this function is
uniformly distributed with respect to the argument. Finally the summatory function of the sum-of-digits
function along the real axis is analyzed.

1. Introduction

Positional number systems have been studied in many different contexts and a

wealth of results are known about digital expansions of integers with respect to

different bases. The sum-of-digits function ν
q
(n) for the q-adic digital expansion

admits an exact summation formula (cf. [2])
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q
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q
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q
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where F
q

is a continuous, 1-periodic, nowhere differentiable function with known

Fourier expansion. Several more sophisticated digital functions have been studied

since then and the fractal behaviour of the summatory functions appeared in many

of these cases (cf. [5, 23]).

Various methods were used to derive such summation formulæ: an early one was

developed by Delange [2] and is based on reinterpretation of the occurring sums as

real integrals. In [23] and [5] it is observed that the classical technique of Dirichlet

generating functions can be used to derive Delange’s formula.

In this paper we shall generalize some results about ‘ordinary’ digital expansions

to positional number systems of the Gaussian integers, which were introduced by

Knuth [20] and extensively studied by Gilbert in a series of papers [7–15]. Again

fractal structures are involved, but it requires some additional ideas to use the

techniques mentioned above in the case of complex bases.

In the introductory Section 2 we shall present a number of auxiliary results about

digital expansions of complex integers (some of which recall results of Gilbert using

a different approach). We also exhibit automata, which describe addition of 1

(respectively, other fixed Gaussian integers) in these positional number systems.

Furthermore formulæ for the sum-of-digits function with respect to complex bases

are derived and we analyze the length of the expansion asymptotically.
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In Section 3 we study the asymptotic behaviour of the summatory function of the

complex sum-of-digits function in large circles, where we encounter quite similar

behaviour as in the real case. In the sequel we use a technique similar to the proof of

Hecke’s prime number theorem to study the uniform distribution of the sum-of-digits

function with respect to the argument.

In a final Section 4 we consider the summatory function of the sum-of-digits

function along the real axis. We are able to give the order of magnitude of this

function in the instance b¯®ai, where a is an even positive integer, but the correct

asymptotics resisted our attempts, although there is some numerical support for the

existence of an asymptotic main term. In the special case of the base b¯®1i we

could derive an exact formula, which is quite similar to the real case. This is due to

the fact that this base is ‘quite close ’ to a real base (b%¯®4). For a more detailed

discussion of the difficulties occurring in the general case we refer to the section in

consideration.

2. Some preliminary results

In this section we summarize a number of results on the (®ai)-ary

representation (a `.) of Gaussian integers that will be helpful in the sequel or are of

their own interest. Notice that these are the only complex integer bases, which give

rise to a unique finite digital representation of the Gaussian integers using a

‘connected’ set of digits from the natural numbers (in our instance we have the digits

0,…, a#), cf. [18, 19]. We shall use the notation (ε
k
, ε

k−"
,… , ε

!
)
−a+i

for the number

3
k

l=!

ε
l
(®ai)l.

Furthermore :x9 will denote the integer part of the real number x.

Let us start with the problem of how to find the digits of a given z `:[i] in base

(®a³i) representation. Gilbert refers in [14] on two strategies, one of them being the

usual chain of divisions. The other one, which he calls the ‘polynomial method’,

is a clearing algorithm using the minimal polynomial for b¯®ai. During the

description of this algorithm we shall use the term ‘overflow’ to describe the fact that

the actual digit is not in the range 0,…, a#. This overflow will be cleared by

subtracting an appropriate multiple of a#1 and using the minimal polynomial of b

(which involves a#1 as a coefficient). Thus the overflow is cleared by carrying it to

the next digit.

In the sequel we present an alternative formulation of the latter method, the

advantage of which is to give an explicit recursion for the digits.

P 2.1. For z¯ z
"
iz

#
`:[i] (with z

"
, z

#
`:) let s

k
(z) `: be defined by

the recurrence
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If b¯®a®i is taken as basis, the initial conditions ha�e to be replaced by

s
−"

(z)¯ z
#
(a#1), s

!
(z)¯ z

"
®az

#
. (2.3)

Proof. We consider the case b¯®ai, the case b¯®a®i being totally similar.

Since

z¯ z
"
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#
¯ z

#
bz

"
z

#
a¯®b

s
−"

(z)

a#1
s

!
(z), (2.4)

we have that ε
!
(z)3 s

!
(z) mod(®ai) and thus coincides with the last digit in the

representation of z
"
z

#
a in base ®ai. Now a#1¯ b[ba , so that

ε
!
(z)¯ z

"
z

#
a mod (a#1)¯ s

!
(z) mod (a#1). (2.5)

(For odd a we have that gcd (b, ba )¯ 1i, and we use the fact that 0 and 1

represent the only residue classes mod 2 with real elements.) Let us now assume by

induction that

z®3
k

j=!

ε
j
(z) (®ai) j

bk+"

¯®b
s
k
(z)

a#1
s

k+"
(z) (2.6)

for fixed k&®1 (the sum 3−"
j=!

is defined to be 0). Then ε
k+"

(z)¯ s
k+"

(z) mod (a#1).

Observing that

m(x)¯x#2ax(a#1) (2.7)

is the minimal polynomial of b¯®ai, we have

s
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so that the right-hand side of (2.6) reads

ε
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(z)b ®2a
s
k+"

(z)

a#1
®

s
k
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a#1
®b
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¯ ε
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k+#
(z)®b
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k+"
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a#1
.

Thus (2.6) remains valid for k replaced by k1, and the proposition is proved.

We remark here that the procedure to obtain the digits as described above is just

a translation of the usual algorithm to obtain the digits with respect to some positive

integer basis. The procedure determines the residue class of the overflow modulo

®ai and uses the identity a#1¯®b#®2ab to carry it to the next significant digit.

A similar reasoning, using the fact that

a#1¯ b$(2a®1)b#(a®1)# b¯ (1, (2a®1), (a®1)#, 0)
−a+i

, (2.8)

that is, replacing m(x) by the polynomial

m
"
(x)¯x$(2a®1)x#(a®1)#x®(a#1)¯ (x®1)m(x), (2.9)

allows us to eliminate an overflow by adding the respective multiple of

(1, (2a®1), (a®1)#)
−a+i

to the three positions to the left of the digit under

consideration.



 --     23

The corresponding recurrence relation reads as follows. Observe that now the

coefficients of the recurrence are positive, which will be preferable for some

applications.

P 2.2. For z¯ z
"
iz

#
`:[i] (with z

"
, z

#
`:) let σ

k
(z) `: be defined by

the recurrence

σ
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(2.10)

σ
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#
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z¯3
k

ε
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(z) (®ai)k
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ε
k
(z)¯σ

k
(z) mod(a#1). (2.11)

(For b¯®a®i, we ha�e σ
−#

(z)¯®(a#1)z
#
, σ

−"
(z)¯ 0, σ

!
(z)¯ z

"
®az

#
.)

Proposition 2.2 allows the following interesting representation of the sum-of-

digits function ν(z).

C 2.3. For any z `:[i] the sequence (σ
k
(z)) from Proposition 2.2 is

ultimately constant. Denoting the limit by σ¢(z), this �alue is di�isible by a#1, and the

sum-of-digits function ν(z) in base b¯®ai satisfies

ν(z)¯ ν(z
"
iz

#
)¯ z

"
(a1)z

#
®(a#22)

σ¢(z)

a#1
. (2.12)

For base b¯®a®i, the term (a1)z
#

has to be replaced by ®(a1)z
#
.

Proof. We know that the base (®ai)-representation of z has finite length

[18, 19]. Therefore, using the last theorem, we have

a#1 rσ
k
(z) fork&k

!
. (2.13)

Under this condition, recurrence (2.10) reads

σ
k
(z)¯ ((a®1)#σ

k−"
(z)(2a®1)σ

k−#
(z)σ

k−$
(z))

1

a#1
. (2.14)

Since the roots of the characteristic equation of this recurrence are 1, b−", ba −", the

solution of this recurrence is given by

σ
k
(z)¯AB

1

bk
C

1

ba k
fork"k

!

with some constants A, B, C. Therefore σ¢(z)¯ lim
k!¢ σ

k
(z)¯A exists. Since σ

k
(z)

is in :, the sequence must ultimately be constant and it follows from (2.14) that

σ¢(z)¯σ
k
!

(z).

In order to express the sum-of-digits function we argue as follows.
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For any M& 1 we have, using (2.10),
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Therefore, for M!¢, we have

3
k&

!

σ
k
(z)®

σ
k
(z)

a#1
(a#1) ¯ z

"
(a1)z

#
®

a#2a2

a#1
σ¢(z).

Observing that by Proposition 2.2 the sum on the left-hand side equals the sum of the

digits of z, the proof is complete.

The case b¯®a®i is analogous.

The base (®ai)-representation of a given number can also be achieved by

having an algorithmic approach to the addition of fixed quantities, for example, 1 or

i, in this representation. This approach also allows us to get some interesting

information on the behaviour of the sum-of-digits function.

For the addition of 1 in the special instance a¯ 1, that is, b¯®1i, Knuth [20]

presents the following system of recurrences. If α is a finite string of zeroes and ones,

let (α)
−"+i

denote the number whose (®1i)-ary representation coincides with the

string α. Furthermore, let αP, α−P, αQ and α−Q be the strings defined by

(αP)
−"+i

¯ (α)
−"+i

1, (α−P)
−"+i

¯ (α)
−"+i

®1,

(αQ)
−"+i

¯ (α)
−"+i

i, (α−Q)
−"+i

¯ (α)
−"+i

®i.
(2.15)

Then these operations on strings obey the following rules for x ` ²0, 1´ :

(α0)P ¯α1, (αx1)P ¯αQx0, (α0)Q ¯αP1, (α1)Q ¯α−Q0,

(αx0)−P ¯α−Qx1, (α1)−P ¯α0, (α0)−Q ¯αQ1, (α1)−Q ¯α−P0.
(2.16)

This system of recurrences corresponds to the following automaton (‘ transducer ’,

see, for example, [4, 21]).

0  0
1  1

0  0
1  1

0 1 1 0

0 1

0 1

0 1

1 0

1 0

1 0

P R

Q

Q

PR

F. 1
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If we want to add 1, that is, perform the operation P, we start at state (node) P.

The automaton reads the digits from right to left. The notation j rk means that the

automaton reads j and outputs k, and moves to the according state. The automaton

has two accepting states (marked by ‘E ’). The meaning is that the remaining digits

(to the left) are simply copied. The auxiliary nodes R and ®R could be suppressed

if we allowed two digits to be read at the same time.

Observe that the ‘meaning’ of each state is just the actual carry that still has to

be processed. So it is not hard to construct such an automaton for the addition of an

arbitrary constant. We just take care about the possible carries, and connect them

accordingly. It is easy to see that in each case there are only a finite number of

possibilities. This also demonstrates that we can use this automaton to add i ; we just

start in state Q. The meaning of R is to add ®1®i, while ®R adds 1i. More

formally,
(αR)

−"+i
¯ (α)

−"+i
®1®i, (α−R)

−"+i
¯ (α)

−"+i
1i,

(αR)
−"+i

¯ (α)
−"+i

®1®i, (α−R)
−"+i

¯ (α)
−"+i

1i.
(2.17)

It is easy to modify the automaton for general b¯®ai (see Figure 2), if we

adjust the operations P, Q and R to denote addition of

1¯ (1)
−a+i

, a®1i¯ (1(2a®1))
−a+i

,
(2.18)

®a®i¯
a#1

®ai
¯ (1(2a®1) (a®1)#)

−a+i
,

respectively, and use ®P, ®Q and ®R to denote the inverse operations. (It is

somehow surprising that the number of states is independent of a.)

We now state an immediate consequence of the structure of the automaton, which

shows an interesting difference to real number systems.

P 2.4. Let c be a fixed complex integer, then ν(zc)®ν(z) attains only

finitely many �alues, for example, ν(z1)®ν(z) ` ²®(a1)#, 1´ and ν(z®a®i)®ν() `
²®2a®1, a#1´. For the difference, in general, the following estimate holds

rν(zxiy)®ν(z)r%
1

2

3

4

3ryr4 rxyr for a¯ 1,

(a#1) ryr(a1)# rxayr for a& 2. (2.19)

Proof. It clearly suffices to consider c¯ 1 and c¯®a®i. First notice that on

every edge of the automaton the value of the sum-of-the-digits, which has been

computed up to that time, is changed by a fixed amount. When the automaton ends

up in an accepting state, then the sum-of-digits is not changed any more. It is an easy

exercise of tracing all the possible paths leading from P (respectively, R) to one of the

accepting states, to see that there are only two possible values for the difference

ν(z1)®ν(z) (respectively, ν(z®a®i)®ν(z)).

For general c¯xiy we split the difference ν(zc)®ν(z) into several parts

according to the value of c. We shall show this procedure for the case y! 0

and x"®ay ; all the other cases are similar. In this case we write xiy¯
®y(®a®i)(xay) and proceed as follows:

ν(zc)®ν(z)

¯ ν(zc)®ν(zaic)ν(zaic)®ν(z2(ai)c)I

ν(z®(y1) (ai)c)®ν(z®y(ai)c)ν(z®y(ai)c)

®ν(z®y(ai)c®1)Iν(z®y(ai)c®x®ay1)®ν(z).
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P

0…

a2-1

1…

a2 a2 0
R

Q

–Q

–R –P

0…

a2-2a

2a…

a2

0…

a2-2a

a2-2a+2…

a2

0…

2a-2

a2-2a+2…

a2

0…
a2-2a

2a…

a2

0…

2a-1 a2

(a-1)2…2a-1…

a2(a-1)2

0…

a2-1

1…

a2

2a-1…

a2 (a-1)2
…0(a-1)2

2a-1

…0…

a2

a20

F. 2.

Each of the differences on the right-hand side can take only two values, thus the sum

of all these differences can take only finitely many values. It is just a matter of

counting the number of terms in the above sum to obtain (2.19).

In the following we want to concentrate on periodicity properties of a fixed digit

ε
k
(z) in z¯3

k
ε
k
(z) (®ai)k, if z runs, for example, through the natural numbers

(analogous results hold if z runs through any arithmetic progression starting at 0).

Our result holds for even a. For a¯ 1 the occurring digit patterns can be described

explicitly, cf. Section 4.

The automaton reads the digit of m starting with the digit ε
!

and produces

the digits of m1, one at each step. Thus the k1 rightmost digits of m, namely

ε
k
(m)…ε

!
(m), depend only on the digits ε

k
(m®1)…ε

!
(m®1) of m®1. Since the

effect of addition-by-one on the last k1 digits is a mapping from ²0,…, a#´k+" to

itself, it is a simple observation that (ε
k
(m)…ε

!
(m))

m&
!

is a periodic sequence in

²0,…, a#´k+" with period at most (a#1)k+". In order to determine the exact length

of the period, we look for the smallest number m" 0 whose k1 rightmost digits

are again 0…0, that is, the smallest m" 0 divisible by (®ai)k+". Now

(®ai)k+" rm implies that (®a®i)k+" rma ¯m,

and because gcd(®ai,®a®i)¯ 1 in :[i] for even a, this yields

(®ai)k+"(®a®i)k+"¯ (a#1)k+" rm.

Therefore the period is exactly (a#1)k+", and we proved the following.

T 2.5. Let z¯3
k
ε
k
(z)(®ai)k, with a an e�en positi�e integer. If z runs

through the natural numbers m, then (ε
k
(m))

m&
!

has period (a#1)k+".

For a an odd positive integer and k& 1 it can be shown that the period is shorter

than (a#1)k+", the exact value depending on the parity of k.
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We shall conclude this section with some facts about the length of the

representation of a complex integer. This mirrors some geometrical facts about the

fundamental region

&¯ 3
¢

k="

ε
k

(®ai)k
r ε

k
` ²0,… , a"´ ,

which is considered in detail in [8, 9, 12, 13]. First we present a proof that the number

of digits of a given number z `:[i] is 2 log
a
#
+"

rzrO(1) as rzr!¢, and we give some

estimates for the O(1)-term.

P 2.6. Let z¯3K

k=!
ε
k
(®ai)k with ε

K
1 0. Then

2 log
a
#
+"

rzr®2 log
a
#
+"

ao(a#4)

a#2
®4%K% 2 log

a
#
+"

rzr®log
a
#
+"

1®
ao(a#4)

a#2
4.

Proof. The first step is to prove the following estimates for digital expressions.

These are necessary, since consideration of just one single most significant digit would

yield a trivial lower bound:

min
ε
$
1
!

3
$

k=!

ε
k
(®ai)k ¯o(a#1), max 3

$

k=!

ε
k
(®ai)k ¯ a$o(a#1).o(a#4).

(2.20)

For this purpose we write w¯w(ε
$
, ε

#
, ε

"
, ε

!
) for 3$

k=!
ε
k
(®ai)k. In order to show

that rwr&o(a#1) if ε
$
1 0, we substitute

ε
"
¯ a#®ε!

"
, ε

#
¯ 2a®ε!

#
, ε

$
¯ 1ε!

$
,

0% ε!
"
% a#, ®a#2a% ε!

#
% 2a, 0% ε!

$
% a#®1.

The only possible combinations of ε
!
,…, ε

$
for which rwr%o(a#1) can hold are

those for which r2wr% a and r&wr% a. These conditions give the inequalities

®2a%®(a$®3a) ε!
$
®(a#®1)ε!

#
aε!

"
ε

!
% 0, (2.21)

1®a% (3a#®1)ε!
$
2aε!

#
®ε!

"
% a1, (2.22)

which, together with the inequalities 0% ε
!
, ε!

"
% a#, yield:

0% (a$®3a)ε!
$
(a#®1)ε!

#
% a$a#2a, (2.23)

1®a% (3a#®1)ε!
$
2aε!

#
% a#a1. (2.24)

These inequalities give

0% ε!
$
%

a%a$®a®1

a%2a#1
.

Hence we derive 0% ε!
$
% 1.

We now distinguish two cases.

Case (1) : ε!
$
¯ 1. In this case the first inequality of (2.23) and the second of

(2.24) yield

®
a$®3a

a#®1
% ε!

#
%®

2a#®a®2

2a
for a& 3.

This inequality has no integer solution for ε!
#
.
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Case (2) : ε!
$
¯ 0. In this case (2.21) and (2.22) together with 0% ε

!
% a# yield

®2a#®a% (a#1)ε!
#
% a#a. On the other hand the left hand side of (2.23) yields

ε!
#
& 0. Thus we have 0% ε!

#
% 1.

In order to check the remaining possibilities for ε!
#
we again distinguish two cases.

Case (1) : ε!
#
¯ 0. In this case we have w¯ aaε!

"
ε

!
(®1®ε!

"
)i, which yields

2w" a for ε!
"
" 0. Thus we are forced to take ε!

"
¯ 0 and ε

!
¯ 0, which results in

w¯ a®i¯ (1, 2a, a#, 0)
−a+i

.

Case (2) : ε!
#
¯ 1. In this case r&wr% a is equivalent to a®1% ε!

"
% 3a®1. For

ε!
"
& a we have 2w" a, thus the only remaining possibility is ε!

"
¯ a®1, where

2w% a forces ε
!
¯ 0. We have w¯ 1ia¯ (1, 2a®1, a#®a1, 0)

−a+i
.

The values 1 and 2 for a were checked with the help of the computer algebra

system Maple.

In order to prove the second inequality (2.20), we write

w¯®(a$®3a)ε
$
(a#®1)ε

#
®aε

"
ε

!
((3a#®1)ε

$
®2aε

#
ε

"
)i

and observe that the signs of the coefficients of the ε
k
(for k¯ 0,…, 3) in the real and

integer part are opposite. Thus the values of the ε
l
which yield the maximum for rzr

can only be 0, a#. Checking the 16 possible values yields w¯ a$(®ai) (a®2i)¯
(a#, 0, a#, 0)

−a+i
.

Now, by grouping the digits into groups of four and using the above estimates,

we have

rzr% 3
:K/%

9

l=!

(o(a#1))K−%l a$o(a#1).o(a#4)max 3
K−%

:K/%
9−"

l=!

ε
l
(®ai)l ,

where the last sum is understood to be 0, if K3 0 mod4. Clearly the max term gets

largest for K3 3 mod4 and we can extend the sum to an infinite sum

rzr%3
¢

l=!

(o(a#1))K−%l a$o(a#1).o(a#4)¯ (o(a#1))K+#
ao(a#4)

a#2
.

(2.25)

On the other hand we have

rzr& 3
K

k=K−$

ε
k
(®ai)k ® 3

K−%

k=!

ε
k
(®ai)k

from which we derive rzr& (o(a#1))K−# (1®ao(a#4)}(a#2)), by combining the

first part of (2.20) and (2.25). Taking the logarithm yields the desired result.

From the above discussions it is clear that the Gaussian integers z which have

‘short ’ (respectively, ‘ long’) expansions correspond to points on the boundary of &
which have maximal (respectively, minimal) modulus. We give a description of an

algorithm which produces approximations to these points with any prescribed

accuracy (we restrict our discussion to the search for minimal points, because this is

slightly more complicated, and the computation of the maximal points is similar).

Step 1. Let z
!
B 1 and NB 1.
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T 1

Minimum Maximum

a¯ 2 0.0782323733 2.0495348269
0.0649797602®0.0435652958i ®1.6995745761®1.1454428256i

a¯ 3 0.0446973085 3.0886782509
0.0013007438®0.0446783779i ®2.8617755988®1.1619697757i

a¯ 4 0.0264422548 4.0913140767
®0.02483643420.0090743802i ®3.9385737228®1.1074691437i

Step 2. Let kB 2.

Step 3. Find the minimum value m
N

of

z
N−"


ε
N

(®ai)N


f

(®ai)N
,

where ε
N

` ²0,… , a#´ and f runs through all points on the boundary of the convex hull

F
k

of ²3k

l="
δ
l
(®ai)−l r δ

l
` ²0,… , a# ´´. If we have found the digit ε

N
for which the

minimum is attained, we look for the digit η
N

1 ε
N

for which the second smallest

value mh
N

of the above expression is attained.

Step 4. If

mh
N
®m

N
"

ao(a#4)

a#2
.(o(a#1))−N−k

then define z
N

B z
N−"

ε
N
}(®ai)N, NBN1 and go to Step 2; or define kBk1

and go to Step 3. Repeat this procedure until (ao(a#4)}(a#2)).(o(a#1))"−N is

smaller than the prescribed accuracy.

The starting value z
!
¯ 1 originates from the fact that the minimal point on the

boundary of & lies on that part of ¦& which meets 1&. For computing the

maximum by this procedure one has to start with z
!
¯ 0 and compute the largest and

second largest values in every Step 3.

As was pointed out in the proof of Proposition 2.6, the main problem in finding

precise lower (and upper) bounds for digital expressions is that this cannot be done

by some digit-after-digit procedure as in the case of simple q-adic expansion. Thus we

start by considering k¯ 2 digits at first in Step 2. Then we compute the minimum

value m
N

and the second smallest value mh
N

for the digital expression involving k1

running digits in Step 3. Consideration of the points in the convex hull F
k
is in order

to cut down the number of points to be computed in this step. If the difference

mh
N
®m

N
is greater than (ao(a#4)}(a#2)).(o(a#1))−N−k (this value comes from

(2.25)), then it is impossible to get a smaller value for rzr by a different choice of ε
N
.

Thus the actual value of ε
N

has been found. If the inequality is not satisfied, we have

to increase the number of digits k to be considered for a new execution of Step 3. The

procedure has to be modified if there is more than one point of minimal modulus on

the boundary of & ; we did not encounter this (very unlikely) case when producing

the table.

Table 1 gives the results of our computations of the extremal values, and the

points of the boundary at which they are attained, for a¯ 2, 3, 4.



30  . ,     

Our computations show that after four starting digits, which differ from 0 and a#,

only these two digits occur. The question whether this is just by chance, is related to

a diophantine approximation problem involving the argument of the limit point z¯
lim

N!¢ z
N

and the argument of ®ai. As there is nothing known about the

arithmetical nature of z, this seems to be a difficult question.

R. It is an immediate consequence of Theorem 2.5 that, if a is even, for

any given string β ` ²0,… , a#´k, there is exactly one natural number m with 0%m!
(a#1)k, whose k rightmost digits in base (®ai)-representation coincide with

string β.

Our considerations from above show, roughly speaking, that about one half of

these digits (namely the rightmost log
a
#
+"

m digits) are sufficient to identify m, if m is

known to be in ..

3. The sum-of-digits function in circles and angles

We consider the asymptotics of the sum-of-digits function in large circles. For

notational convenience we restrict our considerations to the case b¯®2i. Clearly

all the computations below could also be done in the general case. The following

theorem shows that the behaviour of the summatory function is similar to the

behaviour of the summatory function of the ordinary q-ary sum-of-digits function in

intervals. The proof will make use of the rotational symmetry of the circle. In a second

theorem we shall prove that the asymptotic contributions to this summatory function

are uniformly distributed with respect to the argument. In this case there is no

periodic second term.

Theorem 3.1. We ha�e

S(N )¯ 3
rzr#!N

ν(z)¯ 2πN log
&
NNΦ(log

&
N )O((oN ) logN ), (3.1)

where Φ is a continuous periodic function of period 1.

Proof. The proof will make use of some geometric observations concerning the

fundamental region & discussed in [8].

We now write N¯ 5kx with 1%x! 5 and define the functions ε
l
by

z¯ 3
¢

l=−$

ε
l
(z)

(®2i)l
for rzr#! 5.

There is some ambiguity in the definition of these functions which is discussed in [10],

but we shall evaluate them only at points with unique value. The starting point ®3

for the summation is due to the fact that all points in the interior of the circle

rzr#! 5 have at most 4 digits in their ‘ integer part ’.

We are now able to write the summatory function of the sum-of-digits function

in terms of the ε
l
, namely,

S(5kx)¯ 3
k

l=−$

3
rzr#!x

z`&
k

ε
l
(z),

where &
k
is the set ²z¯3k

l=−$
ε
l
}(®2i)k´. Our next step is to rewrite the last sum as
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–2 –1 0.5

1

0.5

–0.5

1

–1.5

F. 3. The Fundamental Region &.

an integral as in Delange’s approach to the summatory function of the ordinary sum-

of-digits function (compare Section 1),

3
rzr#!x

z`&
k

ε
l
(z)5−k¯

rzr#!x

ε
l
(z) dλ

#
(z)O(5−k/#),

where λ
#
denotes the two-dimensional Lebesgue-measure. This observation is due to

the fact that the functions ε
l
(z) are constant on each ‘piece’ of the tiling of the plane

by translates of (®2i)−k&. The O-term originates from the O(5k/#) pieces of the

tiling which intersect the circle rzr#¯x. We now note that

ζ+(−#+i)
−m&

ε
l
(z) dλ

#
(z)¯ 2[5−m form! l and for all ζ `&

m−"
.

This is an immediate consequence of the definition of &.

Therefore we can write

S(5kx)¯ 2π(k4)x5k5k 3
k

l=−$
rzr#!x

(ε
l
(z)®2) dλ

#
(z)O(k5k/#). (3.2)

Then the only contribution to the integrals originates from those translates of

(®2i)−l & which intersect the circle rzr#¯x ; these translates cover an area of

O(5−l/#), which yields

rzr#!x

(ε
l
(z)®2) dλ

#
(z) ¯O(5−l/#).

Note further that each of these integrals is a continuous function with respect to x.

Let now

Ψ(x)¯ 3
¢

l=−$
rzr#!x

(ε
l
(z)®2) dλ

#
(z). (3.3)
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By the above arguments Ψ is continuous and

Ψ(5)¯ 5Ψ(1)10π. (3.4)

Thus we have S(5kx)¯ 2π(k4)x5k5kΨ(x)O(k5k/#). Denoting the fractional

part of x by ²x´ let Φ(z)¯ 8π5−²x´Ψ(5²x´)®2π²x´ and observe that Φ(0)¯Φ(1)¯
Φ(2)¯I is a consequence of (3.4). Thus Φ is a continuous periodic function and

we have

S(N )¯ 2πN log
&
NNΦ(log

&
N )O((oN ) logN ).

R. Notice that differentiability of Ψ(x) (and as a consequence differen-

tiability of Φ(x)) would follow, if one could prove that every circle rzr#¯x meets

the boundary of & in a set of (linear) measure 0. This is plausible but it seems to be

difficult to prove.

Figure 4 shows a plot of the function (1}N )S(N )®2π log
&
N against ²log

&
N ´. As

remarked above it seems to be plausible that all the small peaks disappear and the

function becomes differentiable in the limit.

The next theorem will show that the contributions to the main term in (3.1) are

uniformly distributed with respect to the argument.

9·6

9·5

9·4

9·3

9·2

9·1

0 0·2 0·4 0·6 0·8 1

F. 4

T 3.2. Let A be an inter�al mod 2π. Then

S
A
(N )¯ 3

rzr#!N

argz`A

ν(z)¯ λ(A)N log
&
No(N logN ), (3.5)

where λ is the usual Lebesgue measure. In this case there is no periodicity in the second

term.

Proof. We first consider the Dirichlet generating functions

f
k
(s)¯ 3

z `:[i]c²
!
´

ν(z) eikargz

rzr#s
for integer k.
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Our first objective is an analytic continuation of these functions and information

about the location of singularities. For this purpose we make use of the functional

equation ν((®2i)zl )¯ ν(z)l for l¯ 0,…, 4. This yields

f
k
(s)¯

eikarg(−#+i)

5s
f
k
(s)3

%

l="

3
z `:[i]

(ν(z)l )eikarg((−#+i)z+l)

r(®2i)zlr#s

¯
eikarg(−#+i)

5s−"

f
k
(s)


eikarg(−#+i)

5s
3
%

l="

3
z `:[i]c²

!
´

ν(z)eikargz

rzr#s
eikarg("+l/(−#+i)z)

r1l}(®2i)zr#s
®1 (3.6)

10
eikarg(−#+i)

5s
3

z `:[i]c²
!
´

eikargz

rzr#s
3

%

l="

l "−#s (3.7)


eikarg(−#+i)

5s
3
%

l="

l 3
z `:[i]c²

!
´

eikargz

rzr#s
eikarg("+l/(−#+i)z)

r1l}(®2i)zr#s
®1 . (3.8)

We now need growth information for f
k
(σit) for some σ! 1; this is done by

estimating the growth of the Dirichlet series (3.6) and (3.8). For this purpose we note

that
eikarg("+l/(−#+i)z)

r1l}(®2i)zr#s
®1 %min 2, 8

rkrrsr
rzr

for s¯σit and "

#
!σ% 1. Thus we can estimate the modulus of the first series by

3
rzr!)(

rtr+rkr)

4 log
&
rzr

rzr#σ
 3

rzr&)(
rtr+rkr)

16 rtr log
&
rzr

rzr#σ+"
¯O

k
(rtr#−#σ log rtr)

and by a similar calculation we obtain the bound O
k
(rtr#−#σ) for the second series.

The Dirichlet series (3.7)

ζ
m
(s)¯ 3

z`:[i]c²
!
´

e%imargz

rzr#s
fork¯ 4m

is a Hecke L-series (the function is 0 if kJ 0 mod4), which can be analytically

continued to the whole complex plane and is analytic for m1 0 (cf. [24, 17]). It is

known that ζ
m
(σit)¯O(rtr#−#σ) for 0!σ! 1. (This could be obtained in the same

way as above. Much more subtle estimates are known, but we do not need such deep

results here, cf. [24].) The above arguments yield the analytic continuation of f
k
(s) to

2s" "

#
by

f
k
(s)¯

1

1®eikarg(−#+i) 5"−s
Ξ

k
(s),

where the Dirichlet-series Ξ
k
(s) is given as the sum of (3.6), (3.7) and (3.8) and satisfies

a growth condition Ξ
k
(σit)¯O(rtr#−#σ log rtr). Thus for k1 0 the functions f

k
(s) have

simple poles at the points

s¯ 1i(k arg(®2i)2πn)}log 5) with n `:,

which implies (by the Mellin–Perron summation formula) that

3
rzr#!x

ν(z)eikargz 1®
rzr#

x
¯x"+ikarg(−#+i)/log&F

k
(log

&
x)O(x$/%),

where the Fourier coefficients of F
k

are expressible by values of Ξ
k

and the Fourier
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series is absolutely and uniformly convergent by the growth information derived

above (F
k

is therefore continuous).

In order to apply Weyl’s criterion for the uniform distribution of sequences we

have to prove that

3
rzr#!x

ν(z)eikargz ¯ o(x logx).

For this purpose we make use of the following lemma.

L 3.3. Let a ::[i]*# be an arithmetic function on the Gaussian integers

satisfying a(z)¯O(log rzr). Suppose further that for some ε" 0 and some real α we ha�e

3
rzr#!x

a(z) 1®
rzr#

x
¯x"+iα F(logx)O(x"−

ε), (3.9)

where F is a continuous periodic function. Then 3rzr#!x
a(z)¯ o(x logx).

Proof. Let 1! β! 2 and subtract (3.9) from

3
rzr#!βx

β®
rzr#

x
¯ β#+iα x"+iα F(logxlog β)O(x"−

ε),

which is obtained from (3.9) by inserting βx. This yields

3
rzr#!x

a(z)¯
x"+iα

β®1
(β#+iα F(logxlog β)®F(logx))

®
1

β®1
3

x%rzr#!βx

a(z) β®
rzr#

x
O

x"−
ε

β®1

and by setting β¯ 11}logx and using the continuity of F the result follows.

We now continue the proof of Theorem 3.2 by letting a(z)¯ ν(z)eikargz in the

above lemma. Using Weyl’s criterion for the uniform distribution of sequences (cf.

[22]) completes the proof. Because the singularities of all the functions f
k
(s) are dense

on the line 2s¯ 1, there is no periodic second term in this case. (This argument could

be made rigorous by using uniformly converging Fourier series approximating

characteristic functions ; such series are well known in the theory of uniform

distribution, cf. [22].)

4. The sum-of-digits function along the real line

In this section we consider the summatory function of the sum-of-digits function

for the first N natural numbers, that is,

S(N )¯ 3
!
%k!N

ν(k). (4.1)

We start with the following general estimate that holds for base b¯®ai, with

a¯ 1 or a being an even positive integer.
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P 4.1. The summatory function S(N ) of the sum-of-digits function in

base b¯®ai (where a¯ 1 or a& 2 and e�en) of the first N natural numbers satisfies

a#

2
% lim inf

N!¢

S(N )

N log
a
#
+"

N
% lim sup

N!¢

S(N )

N log
a
#
+"

N
%

3a#

2
. (4.2)

Proof. According to Proposition 2.6 the number of digits of the (®ai)-ary

representation of N is asymptotically equivalent to 2 log
a
#
+"

N (as N!¢). Now let

a& 2 be even. According to Theorem 2.5 asymptotically the rightmost half of

the representation contains each pattern of length C log
a
#
+"

N once, that is, the

digits 0, 1,…, a# occur equally often within this section of digits. This yields a

contribution C "

#
a# log

a
#
+"

N to S(N ). For the remaining leftmost C log
a
#
+"

N digits

we use the trivial estimate that they must lie between 0 and a#, from which (4.2)

follows immediately. For a¯ 1 the result follows from Theorem 4.2.

For a¯ 1 it follows from Theorem 4.2 that S(N )C $

%
N log

#
N. Numerical

estimates support the conjecture that for even a the asymptotic result

S(N )C a#N log
a
#
+"

N asN!¢, a fixed

might hold. That is, the digits 0, 1,…, a# seem to occur asymptotically equally often

even within the leftmost ‘half ’ of digits of the first N natural numbers. So far we have

not been able to find a proof for this fact, even though we have tried very hard. Let

us note here, that a similar geometric argument as in the proof of the asymptotic

formula for large circles could be applied to this problem, but it would be necessary

to know that the boundary ¦& does not intersect any straight line in a set of positive

Lebesgue measure. This seems to be as unreachable as the differentiability of the

remainder function in the circular case.

In the special case b¯®1i it is possible to derive the full asymptotic expansion

for the mean of the sum-of-digits function of the natural numbers k with 0!k!N.

The reason is that in this instance b%¯®4, so that the system behaves like a system

with integer base ®4, if we group together blocks of digits of length 4. Observing that

(0000)
−"+i

¯ 0, (0001)
−"+i

¯ 1, (1100)
−"+i

¯ 2, (1101)
−"+i

¯ 3,

it turns out that the base (®1i)-representation of the natural numbers with digits

²0, 1´ is given by their base (®4)-representation with digits ²0, 1, 2, 3´ followed by a

substitution of these digits by the blocks denoted above, and the sum of digits is equal

in both systems.

It is known from [6] that the mean of the sum-of-digits function for negative

integer bases can be analysed using the ‘Delange method’ (cf. [2]), which is based on

real integration in a clever way. It is also possible to give a bijection to a positive basis

(in our case to base 16), but then, again, a set of non-standard digits has to be used.

In the sequel we use a perhaps more elegant approach, again applying the

Mellin–Perron summation formula as in the proof of Theorem 3.2. As cited in the

Introduction, an extensive description of this technique is given in [5], but it is helpful

to adjust the summation formulæ from that paper in such a way that they fit better

to our present problem.

We shall use the following special form of the Mellin–Perron summation formula

(cf. [1]) for Dirichlet generating functions resembling the Hurwitz ζ-function

3
"
%k!N

λ
k
(N®k)¯

1

2πi

c+i¢

c−i¢

3
¢

k="

λ
k

(k®a)s

(N®a)s+"

s(s1)
ds for 0! a! 1. (4.3)
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For our purposes it will be convenient to use the above version with the parameter

a adjusted in such a way that the function 3
k
λ
k
}(k®a)s will be easier to handle.

By Proposition 2.4 we have

ν(k)®ν(k®1) ` ²1,®4´. (4.4)

Summation by parts gives us

S(N )¯ 3
!
%k!N

ν(k)¯ 3
!
%k!N

(ν(k)®ν(k®1)) (N®k), (4.5)

and thus we are able to apply (4.3) as soon as we have precise information on the

values of k that yield a difference ®4 in (4.4).

Taking a look at the automaton in Figure 1 we realise that ν(k)®ν(k®1)¯®4 if

and only if the base (®1i)-representation of k ends with the digits

Case 1

Case 2

000000(11010000)*,

00010000(11010000)*,
(4.6)

where (in a slight abuse of language) the asterisk denotes a (possibly empty) finite

sequence of blocks of the specified shape.

Since k has to be a natural number it follows that Case 1 occurs if and only if the

representation ends with

Case 1a 00000000(11010000)*,

Case 1b 11000000(11010000)*,

if we are looking for full blocks of size 4.

This means that

k¯ l[16 j+"®4
16 j®1

5


1

2

3

4

®4[16 j Case 1b,

®8[16 j Case 1a,

0 Case 2

(4.7)

with arbitrary l& 1 and j& 0. Altogether we have

ν(k)®ν(k®1)¯ 1®5λ
k
, (4.8)

where

λ
k
¯

1

2

3

4

1 ifk satisfies (4.7),

0 if not.

Inserting in (4.5) we find

S(N )¯ 3
!
%k!N

ν(k)¯ "

#
N(N®1)®5(Σ

!
Σ

"
Σ

#
), (4.9)

where

Σ
i
¯3

k

λ
k
(N®k) fork satisfying k¯ 16 j+" l®

1

20
®

i

4


4

5
, (4.10)

for some j& 0 and l& 1, for i¯ 0, 1, 2.



 --     37

It turns out that any of the sums Σ
i

can be evaluated by the modified

Mellin–Perron formula (4.3) if we set a¯ %

&
. For Σ

!
we have

3
k

λ
k

(k®%

&
)s

¯ 3
j&!,l

&
"

1

16(j+")s(l® "

#!
)s

¯
ζ(s, "*

#!
)

16s®1
, (4.11)

where ζ(s, a)¯3
k&

"
(k®a)−s denotes the Hurwitz ζ-function. The sums Σ

"
and Σ

#

lead to similar expressions and we get the following general formula.

Σ
j
¯

1

2πi

c+i¢

c−i¢

ζ(s, "*
#!

®j}4)

16s®1

(N®%

&
)s+"

s(s1)
ds with c" 1. (4.12)

In order to get an alternative expression for 3
j

we first move the contour of

integration to the left, as usual. We find the first order pole s¯ 1 of the integrand

with

Res
s="

¯
1

15

(N®%

&
)#

2
for j¯ 0, 1, 2.

Altogether this contributes

®
(N®%

&
)#

2
(4.13)

to the term ®5(Σ
!
Σ

"
Σ

#
) in (4.9).

The second order poles in s¯ 0 give rise to more involved terms. Since for

s! 0 we have

ζ s,
19

20
®

j

4
¯®

9

20


j

4
s log

Γ("*
#!

®j}4)

πo2
… ,

1

16s®1
¯

1

s log 16
®

1

2
…,

1

s(s1)
¯

1

s
®1… ,

(N®%

&
)s+"¯ (N®%

&
) (1s log(N®%

&
)…),

we finally get the contribution

3(N®%

&
) log

"'
(N®%

&
)(N®%

&
) ®

3

2
®

3

log 16
®53

#

j=!

log
"'

Γ("*
#!

®j}4)

πo2
(4.14)

to the term ®5(Σ
!
Σ

"
Σ

#
).

For s¯ χ
k
¯ 2kπi}log 16, where k `: c ²0´, we have a series of first order poles

that are equally distributed on the imaginary axis. As usual, these poles give a

fluctuating contribution to the term under consideration, namely,

®5
N®%

&

log 16
τ(log

"'
(N®%

&
)), (4.15)

where

τ(x)¯ 3
k1

!

1

χ
k
(χ

k
1)

3
#

j=!

ζ χ
k
,
19

20
®

j

4
e#kπix, (4.16)

is a continuous periodic function of period 1 and mean zero.
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The remainder term in S(N ) is now

R(N )¯®5[
1

2πi

c+i¢

c−i¢

(N®%

&
)s+"

(16s®1)s(s1)
3
#

j=!

ζ s,
19

20
®

j

4
ds with c! 0. (4.17)

(We might take c¯®"

%
for convenience.) For 2s! 0 we have

1

16s®1
¯® 3

m&
!

16ms,

where the series converges absolutely, so that

R(N )¯®5(N®%

&
) 3
m&

!

I
m
(N ) (4.18)

with

I
m
(N )¯

1

2πi

−"/%+i¢

−"/%−i¢

16ms(N®%

&
)s

s(s1)
3
#

j=!

ζ s,
19

20
®

j

4
ds.

Moving the contour of the integral to the right we have to collect the residues at the

first order poles s¯ 0 and s¯ 1 with negative sign and we find that

I
m
(N )¯ $

&
®$

#
16m(N®%

&
)

1

2πi

c+i¢

c−i¢

16ms(N®%

&
)s

s(s1)
3
#

j=!

ζ s,
19

20
®

j

4
ds with c" 1.

(4.19)

The remaining integral Ih
m
(N ) can now be evaluated explicitly by reading the

Mellin–Perron summation formula (4.3) backwards. If we insert

x¯
1

(N®%

&
)16m

, λ
k
¯ 1, µ

k
¯k®

1

20
®

j

4
for j¯ 0, 1, 2,

we find that

Ih
m
(N )¯3

#

j=!

3
k&

"

f
k® "

#!
®j}4

(N®%

&
)16m

. (4.20)

Now f((k® "

#!
®j}4)}(N®%

&
)16m)¯1®(k® "

#!
®j}4)}(N®%

&
)16m as long as k® "

#!
®j}4%

(N®%

&
)16m, or, equivalently,

1%k%(N®%

&
)16m®"

&
Bα(N,m) (which belongs to .). (4.21)

Observing that 3#
j=!

( "

#!
j}4)¯ *

"!
, we have

Ih
m
(N )¯ 3α(N,m)®

3α(N,m) (α(N,m)1)

2(N®%

&
)16m


9

10

α(N,m)

(N®%

&
)16m

.

With (N®%

&
)16m¯α(N,m)"

&
we finally get

Ih
m
(N )¯

3α(N,m)#

2(α(N,m)"

&
)
. (4.22)

Going back to (4.19) it follows after a short calculation that

I
m
(N )¯

3

50

1

α(N,m)"

&

¯
3

50

1

(N®%

&
)16m

. (4.23)
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Therefore the series 3
m&

!
I
m
(N ) can be computed explicitly and inserting in (4.18),

we end up with

R(N )¯ )

#&
. (4.24)

Since R(N ) was the remainder term in the expansion of S(N ), we have the following

explicit formula (collecting the contributions (4.13), (4.14) and (4.15) and inserting in

(4.19)).

T 4.2. The summatory function S(N )¯3
!
%k!N

ν(k) of the sum-of-digits

function in base b¯®1i is gi�en by the exact formula

S(N )¯ 3(N®%

&
) log

"'
(N®%

&
)®(N®%

&
)

6

5


3

log 16
53

#

j=!

log
"'

Γ("*
#!

®j}4)

πo2

®(N®%

&
)

5

log 16
τ(log

"'
(N®%

&
)) '

#&
.

Here, τ(x) is a continuous periodic function of period 1 and mean zero which has the

Fourier expansion (4.16).

Note added in proof. Since this paper was accepted for publication,

J. M. Thuswaldner (Bull. London Math. Soc. 30 (1998) 37–45) has extended some

of our results to more general number fields.
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