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ABSTRACT. The p-th power of the logarithm of the Catalan generating function is computed
using the Stirling cycle numbers. Instead of Stirling numbers, one may write this generating
function in terms of higher order harmonic numbers.

1. INTRODUCTION

Knuth [3] proposed the exciting formula
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∑
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with the generating function of Catalan numbers and harmonic numbers.
This formula was recently extended by Chu [5] to general exponents p. Note that Knuth

talked about the exponent 1 in his christmas lecture from 2014 [4].
We present here a very simple approach to this question using Stirling cycle numbers;

recall [2] that they transform falling powers into ordinary powers viz.

xn =
∑

0≤k≤n

�
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(−1)n−k x k.

2. THE EXPANSION OF THE p-TH POWER

The substitution z = u
(1+u)2 was presented in [1] and it is extremely useful when dealing

with Catalan numbers and Catalan statistics. Then C(z) = 1 + u, and, by the Lagrange
inversion formula [7],
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∑
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for m ≥ 1. For m = 0 the formula is still true when taking a limit. We now consider the
bivariate generating function

F(z,α) =
∑

p≥0

αp

p!
(log C(z))p = exp(α log C(z)) = Cα(z) = (1+ u)α =

∑
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Therefore
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∑
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The desired formula follows from reading off coefficients of αp:

(log C(z))p = p![αp]F(z,α) =
∑

p≤m≤n
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3. SPECIAL CASES

For p = 1, we get the instance of the Christmas lecture:

log C(z) = [α1]F(z,α) =
∑
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Since
�m

1
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= (m− 1)!, this leads to

log C(z) = [α1]F(z,α) =
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Now we turn to the instance p = 2 from [3]. (Note that
�m

2

�

= (m− 1)!Hm−1.)

2[α2]F(z,α) =
∑

2≤m≤n

2
m!
(−1)m

�

m
2

�

m
n

�

2n
n−m

�

zn

= 2
∑

2≤m≤n

Hm−1(−1)m
1
n

�

2n
n−m

�

zn

= 2
∑

1≤ j<m≤n

1
j
(−1)m

1
n

�

2n
n−m

�

zn

= 2
∑

1≤ j<n

1
j
(−1) j−1 1

n

�

2n− 1
n− j − 1

�

zn.

To obtain the form proposed by Knuth, we still need to prove that
�
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(H2n−1 −Hn) = 2
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Modern computer algebra systems readily simplify the difference of these two sides to 0, as
expected.

4. CONNECTION WITH HARMONIC NUMBERS — THE GENERAL CASE

In [6], there is the general formula

1
n!

�

n+ 1
r + 1

�

= (−1)r
∑

{r}

l
∏

j=1

(−1)i j

i j!

�

H
(r j)
n

r j

�i j

.

Here, the sum is over all partitions of r: r = i1r1 + · · ·+ il rl , with parts r1 > · · ·> rl ≥ 1 and
positive integers i1, . . . , il . As an example, the partitions of r = 4 are 4, 3+1, 2+2, 2+1+1,
1+ 1+ 1+ 1, written alternatively as 1 · 4, 1 · 3+ 1 · 1, 2 · 2, 1 · 2+ 2 · 1, 4 · 1.

There appear higher order harmonic numbers as well:

H (i)n =
∑

1≤k≤n

1
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Here are the first few instances:
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This allows to replace 1
(m−1)!

�m
p
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in

(log C(z))p =
∑

p≤m≤n
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by an expression involving H (1)m−1, . . . , H (p−1)
m−1 .

5. EXTENSION

If instead of u = z(1+ u)2 we work with u = z(1+ u)λ, then we deal with the generating
function of extended (generalized) Catalan numbers

Cλ(z) =
∑

n≥0

�

1+ nλ
n
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1+ nλ
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From [2], we infer that
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∑
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So

F(z,α) =
∑
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The desired formula follows from reading off coefficients of αp:

(log Cλ(z))
p = p![αp]F(z,α) =

∑
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