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ABSTRACT. The area of S-Motzkin paths (bijective to ternary trees) is calculated using the
kernel method by enumerating these (partial) paths with fixed end-point resp. starting point.

1. INTRODUCTION

The area of a lattice path A is defined to be
∑

i≥0 hi(A ) where hi(A ) is the height of
the path A at x-coordinate i. This parameter has been studied in various types of paths
[8, 9, 1]. In this paper, the area will be available as a corollary of the enumeration of partial
(incomplete) families of lattice paths that are bijective to ternary trees, and thus enumerated
by the numbers 1

2n+1

�3n
n

�

.
We study such a family that was recently introduced by [11], and find explicit formulae

for them ending after n steps at level k, both, from left to right (starting at the origin) and
also from right to left (starting at the end and going backwards). The latter instance is the
more challenging one.

S-Motzkin paths can be transformed into other more traditional ternary objects, like ternary
trees and ternary paths. No use of this will, however, made here, to keep the discussion self-
contained. This is also beneficial from a pedagogic point of view, since it shows how to deal
with a system of two equations and the kernel method, in the presence of cubic equations.

The enumeration in this paper involves a lattice path called an S-Motzkin path. This is
a subclass of Motzkin paths introduced by the authors in a previous publication [11]. For
completeness, we provide the definition again.

Definition 1. An S-Motzkin path of length 3n is
• a Motzkin path
• it consists of n up-steps (1,1), n down-steps (1,−1), n level-steps (1,0)
• ignoring the down-steps, the level-steps and the up-steps alternate, starting with a level-

step.

We apply the kernel method to S-Motzkin paths as well as reverse S-Motzkin paths to
obtain the area of S-Motzkin paths. As a bonus, we obtain the exact enumeration of partial
S-Motzkin paths. It is particularly worthwhile to obtain results for this relatively new class of
lattice paths, since, as seen in [7], this family appeared in a surprisingly unrelated context.
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It is perhaps of independent interest to note that S-Motzkin paths were introduced to solve
a problem from a student olympiad about frog hops [10].

A state-of-the-art survey about lattice path enumeration is [6]; it does not include S-
Motzkin paths, as they are new.

Our main findings are the enumerations of four classes of paths (defined later): (1), (2),
(3), (4), and the area (7). Informally, these are the enumeration of (partial) S-Motzkin paths,
ending on a prescribed level, both, when considering them from left-to-right and from right-
to-left. The area of an S-Motzkin is the sum of all its ordinates. The sum of this is computed,
when summing over all S-Motzkin paths of the same length 3n.

2. PRELIMINARY COMPUTATIONS

The following computation appears frequently in this paper, and we want to do it only
once: Here, x = t(1− t)2, and in all applications we will have z3 = x .

[xm]
1

(1− t) j
=

1
2πi

∮

d x
xm+1

1
(1− t) j

=
1

2πi

∮

d t(1− 3t)(1− t)
tm+1(1− t)2m+2

1
(1− t) j

= [tm]
1− 3t

(1− t)2m+ j+1
=
�

3m+ j
m

�

− 3
�

3m+ j − 1
m− 1

�

.

The binomial series notation as given in [5]

Bt(x)
r =

∑

k≥0

�

tk+ r
k

�

r
tk+ r

x k

can often be used to express certain quantities that appear in this paper. This is elegant, but
the notation using the variable t (as in x = t(1− t)2) seems to be more efficient. Note that
the coefficient of xn inB3(x)1 is 1

3n+1

�3n+1
n

�

= 1
2n+1

�3n
n

�

, which is the number of ternary trees
of size n.

The generating function for ternary trees and also S-Motzkin paths and ternary paths can be
rewritten asB3(x) using this notation. We will frequently use the substitution x = t(1− t)2.

From the Lagrange inversion formula [2, Theorem A.2] we find

[xn]tk =
k
n
[wn−k]

1
(1−w)2n

=
k
n

�

3n− k− 1
n− k

�

⇒ tk =
∑

n≥k

�

3n− k− 1
n− k

�

k
n

xn.

Using this we can compute an expansion that is useful in the context of ternary paths and
variants:

p

4t − 3t2 = 2t1/2
Ç

1− 3
4 t = 2t1/2

∑

k≥0

(−1)k(3
4)

k
�1

2

k

�

tk
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= 2t1/2
∑

k≥0

(−1)k(3
4)

k
�1

2

k

�

∑

n≥k

�

3n− k− 1
n− k

�

k
n

xn

= 2t1/2
∑

n≥0

xn
∑

1≤k≤n

(−1)k(3
4)

k
�1

2

k

��

3n− k− 1
n− k

�

k
n

= −2t1/2
∑

n≥0

�

3n− 3
2

2n

�

1
2n− 1

xn.

The simplification of the inner sum was done by a computer.
This is one way to switch between expressions in the variable t and expressions in terms

of the binomial series notation.

3. THE ENUMERATION OF PARTIAL S-MOTZKIN PATHS

3.1. S-Motzkin paths. A partial S-Motzkin path is a Motzkin path that can be continued
to be an S-Motzkin path, or we might say the first part (of length m, say) of an existing S-
Motzkin path. Since S-Motzkin paths are not symmetric w. r. t. left vs. right, we will later
also consider this concept from right to left (which turns out to be more difficult).

Let an,k denote the number of partial S-Motzkin path of length n which ends at height k
and the last step of the path from the step set {(1,0), (1, 1)} is a (1,1) step. Similarly, let bn,k
denote the number of partial S-Motzkin path of length n which ends at height k and the last
step of the path from the step set {(1, 0), (1,1)} is a (1, 0) step. It is convenient to set a0,0 = 1
and b0,0 = 0.

The path represented by an,k The path represented by bn,k

...
•(n, k)

possibly empty

...
•(n, k)

possibly empty

It is easily seen that the following recurrence relations hold:

an,k = bn−1,k−1 + an−1,k+1,

bn,k = an−1,k + bn−1,k+1.

These recurrence relations are valid for n ≥ 1 and k ≥ 0; the quantity bn−1,−1 must be
interpreted as 0. We let

A(z, u) =
∑

n≥0

∑

k≥0

an,k znuk and B(z, u) =
∑

n≥0

∑

k≥0

bn,k znuk
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and sum over n and k to obtain the following system of equations

A(z, u)− 1= zuB(z, u) +
z
u

A(z, u)−
z
u

A(z, 0),

B(z, u) = zA(z, u) +
z
u

B(z, u)−
z
u

B(z, 0).

Solving the system of equations for A(z, u) and B(z, u) gives

A(z, u) =
−u2 + zuA(z, 0) + zu− z2A(z, 0) + B(z, 0)z2u2

z2u3 − u2 + 2zu− z2
,

B(z, u) =
z(−u2 + uB(z, 0) + zuA(z, 0)− zB(z, 0))

z2u3 − u2 + 2zu− z2
.

The polynomial in the denominator, z2u3 − u2 + 2zu − z2, is of interest to us. Using the
substitution u= zw along with z3 = t(1− t)2, we obtain

(t2w2 − 2tw2 + tw+w2 − 2w+ 1)(tw− 1) = 0.

Therefore the three roots (expressed again in the variable u) are given by

v1 =
z
t
, v2 = −z

t − 2+
p

4t − 3t2

2(1− t)2
, v3 = −z

t − 2−
p

4t − 3t2

2(1− t)2
.

Alternatively, the three roots can be written using B3(z3) and B3/2(±z3/2), but this will not
be used.

The roots can also be expressed as series (Puiseux series, to be exact)

v1 = z−2 − 2
∑

n≥0

(3n)!
(2n)!(n+ 1)!

z3n+1,

v2 = −6
∑

n≥0

(6n+ 1)!(n+ 1)!
(3n)!(2n+ 3)!(2n)!24n

z3n+5/2 +
∑

n≥0

(3n)!
(2n)!(n+ 1)!

z3n+1,

v3 = 6
∑

n≥0

(6n+ 1)!(n+ 1)!
(3n)!(2n+ 3)!(2n)!24n

z3n+5/2 +
∑

n≥0

(3n)!
(2n)!(n+ 1)!

z3n+1,

and it can be shown that these series are indeed the roots by converting them to hypergeo-
metric functions and using Clausen’s identity [12], but we mention this just for interest and
will not use it further. Gessel and Xin [3] used such an approach, but it is a tour the force
and fortunately, here, we can avoid to go that route.

Note that

v2 + v3 = −
z(t − 2)
(t − 1)2

and v2v3 =
z2

(t − 1)2
.

We know that A(z, u) and B(z, u) have power series expansions around (0, 0), so the factors
(u − v2) and (u − v3) in the denominator must also be factors in the numerator. Hence we
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can find A(z, 0) and B(z, 0) by solving the system

0= −v2
2 + zv2A(z, 0) + zv2 − z2A(z, 0) + B(z, 0)z2v2

2 ,

0= −v2
3 + v3B(z, 0) + zv3A(z, 0)− zB(z, 0),

to obtain

A(z, 0) = −
v2v3

z2
+

v2

z
+

v3

z
and B(z, 0) =

v2v3

z
.

Substituting these back into the original equations yields

A(z, u) =
u2v2v3z2 − uv2v3 − u2z + uv2z + uv3z + v2v3z + uz2 − v2z2 − v3z2

(u− v1)(u− v2)(u− v3)z3
,

B(z, u) = −
1

(u− v1)z
.

Since we know that (u−v2) and (u−v3) are factors of the numerator of A(z, u)we can simplify
A(z, u) by dividing these two factors out (we consistently use the variable t for that). After
simplification,

A(z, u) =
1

1− tu
z

and B(z, u) =
t
z2

1
1− tu

z

.

Extraction of coefficients is now easy:

[uk]A(z, u) =
tk

zk
, [uk]B(z, u) =

tk+1

zk+2
.

Furthermore

[znuk]A(z, u) = [zn+k]tk

These coefficients are 0 unless n + k = 3m for some m ∈ N. Thus we will compute the
coefficient of z3m−k in [uk]A(z, u), and we write x = z3 for convenience, as before.

[z3m−kuk]A(z, u) = [z3m]tk = [xm]tk

= [tm−k]
1− 3t

(1− t)2m+2

=
�

3m− k+ 1
m− k

�

− 3
�

3m− k
m− k− 1

�

. (1)

Likewise,

[znuk]B(z, u) = [zn+k+2]tk+1.
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Since this only makes sense if n+k+2= 3m for some m ∈ N. Thus we read off the coefficient
of z3m−k−2:

[z3m−k−2uk]B(z, u) = [z3m]tk+1 = [xm]tk+1 = [tm−k−1]
1− 3t

(1− t)2m+2

=
�

3m− k
m− k− 1

�

− 3
�

3m− k− 1
m− k− 2

�

. (2)

3.2. Reverse S-Motzkin paths. A reverse S-Motzkin path is an S-Motzkin path read from
right to left. Alternatively, we might say that a reverse S-Motzkin path is a Motzkin path of
length 3n with n of each type of step such that the first step from the step set {(1, 0), (1,−1)}
is a (1,−1) step. Furthermore, (1,0) and (1,−1) steps alternate.

Let cn,k denote a partial reverse S-Motzkin path of length n which ends at height k and the
last step of the path in the step set {(1, 0), (1,−1)} is a (1, 0) step. Similarly, let dn,k denote
a partial reverse S-Motzkin path of length n which ends at height k and the last step of the
path in the step set {(1, 0), (1,−1)} is a (1,−1) step.

The path represented by cn,k The path represented by dn,k

... ...
•(n, k)

possibly empty

... ...
•(n, k)

possibly empty

It is easily seen that the following recurrence relations hold:

cn,k = cn−1,k−1 + dn−1,k,

dn,k = dn−1,k−1 + cn−1,k+1.

These recurrences hold for n ≥ 1 and k ≥ 0; cn−1,−1 and dn−1,−1 must be interpreted as zero,
and the initial values are c0,0 = 1 and d0,0 = 0.

Let

C(z, u) =
∑

n≥0

∑

k≥0

cn,kznuk and D(z, u) =
∑

n≥0

∑

k≥0

dn,kznuk,

and sum the recursion over n and k. This results in

C(z, u)− 1= zuC(z, u) + zD(z, u),

D(z, u) = zuD(z, u) +
z
u

C(z, u)−
z
u

C(z, 0).

Solving this system gives

C(z, u) =
u− u2z − C(z, 0)z2

z2u3 − 2zu2 + u− z2
and D(z, u) =

C(z, 0)uz2 − C(z, 0)z + z
z2u3 − 2zu2 + u− z2

.
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Note that the denominator is given by

z2u3 − 2zu2 + u− z2

whereas in the previous section (§3.1) the denominator was given by

z2u3 − u2 + 2zu− z2 = z2(u− v1)(u− v2)(u− v3);

the explicit forms of the roots are repeated for convenience:

v1 =
z
t
, v2 = −z

t − 2+
p

4t − 3t2

2(1− t)2
, v3 = −z

t − 2−
p

4t − 3t2

2(1− t)2
.

The equation z2u3 − u2 + 2zu− z2 along with the substitution u = 1/u and multiplication
by −u3 gives the denominator in the current case:

−u3
�

z2
�

1
u

�3
−
�

1
u

�2
+ 2z

�

1
u

�

− z2
�

= −z2 + u− 2zu2 + z2u3.

Therefore the roots of the polynomial z2u3 − 2zu2 + u − z2 are given by v−1
1 , v−1

2 , and v−1
3 ,

hence

z2u3 − 2zu2 + u− z2 = z2
�

u−
1
v1

��

u−
1
v2

��

u−
1
v3

�

.

Note that
1
v1
=

t
z

,
1
v2
=
−t + 2+

p
4t − 3t2

2z
,

1
v3
=
−t + 2−

p
4t − 3t2

2z
.

In the current right-to-left enumeration, u−v−1
1 is the factor in the denominator that is also

a factor of the numerator. Plugging in u= v−1
1 into the numerator of D(z, u) (the numerator

of C(z, u) could also be used) gives

C(z, 0) =
v1

v1 − z
.

Using this value for C(z, 0), it follows that

C(z, 0)uz2 − C(z, 0)z + z
u− v−1

1

=
z2v1

v1 − z
= z2C(z, 0),

and thus

D(z, u) =
C(z, 0)

�

u− 1
v2

��

u− 1
v3

� .

We can further write

D(z, u) =
1

(1− t)
�

u− 1
v2

��

u− 1
v3

� ,

and representing this as a partial fraction gives

D(z, u) =
t

z(1− t)
v3

(1− uv3)(v3 − v2)
−

t
z(1− t)

v2

(1− uv2)(v3 − v2)
.
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Therefore we can find the coefficients of D(z, u):

[uk]D(z, u) =
t

z(1− t)

vk+1
3 − vk+1

2

v3 − v2
.

The identity [4, eq. (22)] will be useful in calculating [znuk]D(z, u) and [znuk]C(z, u), so
note that

vk+1
3 − vk+1

2

v3 − v2
=
bk/2c
∑

i=0

(−1)i
�

k− i
i

�

(v2 + v3)
k−2i(v2v3)

i

=
bk/2c
∑

i=0

(−1)i+k
�

k− i
i

�

zk−2i(t − 2)k−2i

(t − 1)2k−4i

z2i

(1− t)2i

= zk
bk/2c
∑

i=0

(−1)i+k
�

k− i
i

�

(t − 2)k−2i

(t − 1)2k−2i
.

Further,

[uk]D(z, u) = tzk−1
bk/2c
∑

i=0

(−1)i+k−1
�

k− i
i

�

(t − 2)k−2i

(t − 1)2k−2i+1
.

Now set n= 3N + s− 1, k = 3K + s for s ∈ {0,1, 2}. Then

[znuk]D(z, u) = [z3N+s−1u3K+s]D(z, u)

= [xN−K]t
bk/2c
∑

i=0

(−1)i+k−1
�

k− i
i

�

(t − 2)k−2i

(t − 1)2k−2i+1

= [xN−K]t
bk/2c
∑

i=0

k−2i
∑

j=0

(−1)i
�

k− i
i

��

k− 2i
j

�

1
(1− t)2k−2i− j+1

=
bk/2c
∑

i=0

k−2i
∑

j=0

(−1)i
�

k− i
i

��

k− 2i
j

�

×
��

n+ k− 2i − j + 1
(n− k+ 1)/3− 1

�

− 3
�

n+ k− 2i − j
(n− k+ 1)/3− 2

��

. (3)

Similarly, for C(z, u) we get

u− u2z − C(z, 0)z2

u− v−1
1

=
−(uv1z − v1 + z)

v1
,

and thus

C(z, u) =
1− t − uz

z2
�

u− 1
v2

��

u− 1
v3

� =
(1− t − uz)

(1− t)2(1− v2u)(1− v3u)
.
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Rewriting C(z, u) using partial fractions gives

C(z, u) =
�

1
1− t

−
uz

(1− t)2

�

1
v3 − v2

�

v3

1− uv3
−

v2

1− uv2

�

,

which allows for coefficient extraction:

[uk]C(z, u) =
1

1− t

vk+1
3 − vk+1

2

v3 − v2
−

z
(1− t)2

vk
3 − vk

2

v3 − v2

= zk
bk/2c
∑

i=0

(−1)i+k
�

k− i
i

�

(t − 2)k−2i

(t − 1)2k−2i+1

− zk
b(k−1)/2c
∑

i=0

(−1)i+k−1
�

k− 1− i
i

�

(t − 2)k−1−2i

(t − 1)2k−2i

= zk
bk/2c
∑

i=0

k−2i
∑

j=0

(−1)i−1
�

k− i
i

��

k− 2i
j

�

1
(1− t)2k−2i− j+1

− zk
b(k−1)/2c
∑

i=0

k−1−i
∑

j=0

(−1)i−1
�

k− i − 1
i

��

k− 1− 2i
j

�

1
(1− t)2k−2i− j

.

Furthermore, with n= 3N + s, k = 3K + s,

[znuk]C(z, u) = [xN−K]
bk/2c
∑

i=0

k−2i
∑

j=0

(−1)i
�

k− i
i

��

k− 2i
j

�

1
(1− t)2k−2i− j+1

− [xN−K]
b(k−1)/2c
∑

i=0

k−1−i
∑

j=0

(−1)i
�

k− 1− i
i

��

k− 1− 2i
j

�

1
(1− t)2k−2i− j

=
bk/2c
∑

i=0

k−2i
∑

j=0

(−1)i
�

k− i
i

��

k− 2i
j

�

(4)

×
��

n+ k− 2i − j + 1
(n− k)/3

�

− 3
�

n+ k− 2i − j
(n− k)/3− 1

��

−
b(k−1)/2c
∑

i=0

k−1−i
∑

j=0

(−1)i
�

k− 1− i
i

��

k− 1− 2i
j

�

(5)

×
��

n+ k− 2i − j
(n− k)/3

�

− 3
�

n+ k− 2i − j − 1
(n− k)/3− 1

��

. (6)

3.3. The area of S-Motzkin paths. Consider an arbitrary S-Motzkin path of length 3n. This
path can be decomposed at any height k that the path attains into either an (1) a`,k path
followed by a c3n−`,k path or (2) a b`,k path followed by a d3n−`,k path.
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The subpaths a`,k and c3n−`,k The subpaths b`,k and d3n−`,k

...
•(`, k)

......
•

...
•

......
•(`, k)

We see that the generating function for the total area (all the areas, summed over all S-
Motzkin paths of the same length) is given by

∑

k≥0

k
�

[uk]A(z, u) · [uk]C(z, u) + [uk]B(z, u) · [uk]D(z, u)
�

.

Fortunately, we have explicit forms for [uk]A(z, u), [uk]B(z, u), [uk]C(z, u), [uk]D(z, u), and
we compute the sum, using the forms of v2 and v3 involving t (using a computer, of course):
∑

k≥0

k
�

[uk]A(z, u) · [uk]C(z, u) + [uk]B(z, u) · [uk]D(z, u)
�

=
∑

k≥0

k

�

� 1

zvk+1
2 vk+1

3

−
1

zvk+2
2 vk+2

3

�

·
�

(vk+1
3 − vk+1

2 )
� v2v3 − v2

2 v2
3 z

z2(v3 − v2)

�

+ (vk
2 − vk

3 )
� v2v3

z(v3 − v2)

�

�

+
� 1

zvk+1
2 vk+1

3

�

· (vk+1
3 − vk+1

2 )
� v2v3

(v3 − v2)(1− zv2v3)

�

�

=
t

(1− t)2(1− 3t)2
.

Using Cauchy’s integral formula we find that the area of S-Motzkin paths of length 3n is given
by

[xn]
t

(1− t)2(1− 3t)2
=

1
2πi

∮

d x
xn+1

t
(1− t)2(1− 3t)2

=
1

2πi

∮

d t
tn(1− t)2n+3

1
(1− 3t)

= [tn−1]
1

(1− t)2n+3

1
(1− 3t)

=
n−1
∑

k=0

3k[tn−1−k]
1

(1− t)2n+3

=
n−1
∑

k=0

3k
�

3n+ 1− k
n− 1− k

�

. (7)
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