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The family of planted plane trees (trees for short) B

is defined by the formal equation .

B = • + i + A + .
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B B

from which it follows that the generating function B(z) of

trees satisfies B=z/ (1-B) and is given by

1- ~

	

1

	

n(1/2) B(z) =	
2		[

	

(-4)

	

n

	

= .1(2n-2
n-1

[zn]f denotes, as usual, the coefficient, of zn in the

series f .

The average height hn (i .e . maximal number of nodes in a

chain connecting the root and a leaf) of trees of size n,

where all trees with n nodes are assumed to be equally li-

kely, satisfies

hn = /"_n - 2 + O(n-1/2~

This has been derived in the pioneering paper [1] .

We give here an alternative derivation which has the ad-

vantage that the coefficients in the asymptotic series for

hn can be computed more easily . To illustrate this, we

compute two further terms (one appears already in [5],[6]) .

The method is based on a~omplex variable approach which is

explained in more detail in a forthcoming paper of Flajolet and

the author about register allocation problems [3] . Here, we

just give the computational steps ; a rigorous derivation

can be made "d la Odlyzko" ([2],[7]) or by a Darboux-type

argument where a generating function f(z) has a singularity
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p on its circle of convergence and behaves like

f(z) = f 1 (z) .log( 1 p) + f2(z) .(1-p)1/2 + f 3 (z)
with f 1 , f 2 , f 3 analytic in a larger area [4] .

Such a local expansion can then be translated into
an expansion of the Taylor coefficients of f(z) .
h is given byn

[zn ] E(z)

1z n ] B(z)

where E(z) is the generating function of the sum of heights
of all trees with n nodes . Using the substitution [1]

z= u

	

u= 1-r with r = /-1-4z,
(1+u) 2

	

1+r

the singularity of z=1/4 turns into u=1 . So we want to know
about a local expansion of E(z) about u=1 . It is convenient
to set u=e -t , where t tends to 0 . It is known [1] that

h =n

E(z) = 1+u . I d(k) uk

where d(k) is the number of divisors of k . Now

1-u _ 1-e-t _ t - t2 /2 + t 3/6 +. . .
1+u
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t3= 2 - 24 + . . .
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so that we can turn to the other factor of E(z), which we
call

The Mellin transform (see [4]) of V(t) is readily derived
to be

V* (s)

	

= S2 (s) r(s)
the Mellin inversion formula tells us



we
an

Hence

Now

E(z)

yielding

V(t) .

By shifting the

Y _ log t
t

	

t

There are simple poles

Bk+1

	

(-1)k
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k!
Bi denoting Bernoulli numbers . Thus

v(t) ti

2+i'.

2ni

	

c 2 (s) r (s) t-s ds
2-i-

line of integration to the left
please and taking the residues into account, we obtain
asymptotic series for V(t) :
There is a double pole ""at s= the residue is

a

	

k E]N0 ; the residues are
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t = - log 1+r = 2r + 2-= + . . .
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r3+	6	 - 12 + . . .

K 1 - 4 log(1-4z) + 4 /-1-4z + K 2 .(1-4z)

+ 12(1-4z) log(1-4z) + 0 .(1-4z) 3'2 +
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as far as

t 3
96 "'



To get [zn]E(z) we have to find [zn]log(1-4z) ,

and so on :

Now

This gives

n
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Remark that the nature of the expansion of E(z) tells us,

that the asymptotic series for hn is in powers of 1/

1/2
( n ~=

and

thus

(2n) tin

(1/2)tin
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Hence

7. Epilogue

From the explicit formulae for the generating functions mentioned in the intro-
duction we find for instance

S,+1(z)=(B(z)-1)2DRp(z) .

We will sketch a simple combinatorial argument for that : Take a tree with register
function p and consider its unique largest subtree in the forest of critical nodes .
This tree is a complete binary tree with 2° leaves . If we replace each leaf by an
arbitrary nonempty tree (counted by B(z)-1), we thereby obtain a tree with
strictly larger register function . This mapping is injective ; it is surjective as well .
So we have a bijection and therefore the announced formula . (The inverse map-
ping could be described in a clumsy way by cutting down a tree with register
function >p in a certain sense of maximality, yielding the 2° nonempty trees
and a tree with register function p .)

We will now prove the explicit formulae starting from our just established
equality. This is therefore a second easy derivation of the explicit formulae .
(The first one is due to P . Kirschenhofer and H. Prodinger, see [12]) . We have

Sp+1 =u 2PRD and SP =uzP-'Rp-1 ;

taking differences we see :

Rv=u2P-'Rv- -u
2PR1

	

v

On the register function of a binary tree

N(z)-Jr(-1)log, t'- 161og 2 E-

259

Theorem 5. The average number of nodes "above" the node which first equals the
register value is asymptotic to

n -* oo .

- 1 t -2 - '( - 1 ) logt (a=2)
3 -

	

log2

1 t-2- 1 t -1 + C(-1) logt (a=3).
3 2

	

21og2
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