the height of planted plane trees revisited
 Helmut Prodinger

Technical University Vienna, Institute for Algebra and Discrete Mathematics, A-1040 Vienna, Gußhausstraße 27-29, Austria

The family of planted plane trees (trees for short) B is defined by the formal equation.

$$
B=+{\underset{B}{B}}+{\underset{B}{A}}_{\lambda_{B}}+\cdots
$$

from which it follows that the generating function $B(z)$ of trees satisfies $B=z /(1-B)$ and is given by

$$
B(z)=\frac{1-\sqrt{1-4 z}}{2} ; \quad\left[z^{n}\right] B=-\frac{1}{2}(-4)^{n}\binom{1 / 2}{n}=\frac{1}{n}\binom{2 n-2}{n-1} .
$$

$\left[z^{n}\right] f$ denotes, as usual, the coefficient of z^{n} in the series f.

The average height $\overline{h_{n}}$ (i.e. maximal number of nodes in a chain connecting the root and a leaf) of trees of size n, where all trees with n nodes are assumed to be equally likely, satisfies

$$
\overline{h_{n}}=\sqrt{\pi n}-\frac{1}{2}+O\left(n^{-1 / 2}\right)
$$

This has been derived in the pioneering paper [1].
We give here an alternative derivation which has the advantage that the coefficients in the asymptotic series for $\overline{h_{n}}$ can be computed more easily. To illustrate this, we compute two further terms (one appears already in [5],[6]). The method is based on a complex variable approach which is explained in more detail in a forthcoming paper of flajolet and the author about register allocation problems [3]. Here, we just give the computational steps; a rigorous derivation can be made "a la odlyzko" ([2],[7]) or by a Darboux-type argument where a generating function $f(z)$ has a singularity
ρ on its circle of convergence and behaves like

$$
f(z)=f_{1}(z) \cdot \log \left(1-\frac{z}{\rho}\right)+f_{2}(z) \cdot\left(1-\frac{z}{\rho}\right)^{1 / 2}+f_{3}(z)
$$

with f_{1}, f_{2}, f_{3} analytic in a larger area [4].
Such a local expansion can then be translated into an expansion of the Taylor coefficients of $f(z)$.
$\overline{h_{n}}$ is given by

$$
\overline{h_{n}}=\frac{\left[z^{n}\right] E(z)}{\left[z^{n}\right] B(z)}
$$

where $E(z)$ is the generating function of the sum of heights of all trees with n nodes. Using the substitution [1]

$$
z=\frac{u}{(1+u)^{2}} \quad \leftrightarrow \quad u=\frac{1-r}{1+r} \text { with } r=\sqrt{1-4 z}
$$

the singularity of $z=1 / 4$ turns into $u=1$. So we want to know about a local expansion of $E(z)$ about $u=1$. It is convenient to set $u=e^{-t}$, where t tends to 0 . It is known [1] that

$$
E(z)=\frac{1-u}{1+u} \cdot \sum_{k \geq 1} d(k) u^{k}
$$

where $d(k)$ is the number of divisors of k. Now

$$
\begin{aligned}
\frac{1-u}{1+u} & =\frac{1-e^{-t}}{1+e^{-t}}=\frac{t-t^{2} / 2+t^{3} / 6+\ldots}{2-t+t^{2} / 2+\ldots} \\
& =\frac{t}{2}-\frac{t^{3}}{24}+\cdots,
\end{aligned}
$$

so that we can turn to the other factor of $E(z)$, which we call

$$
V(t)=\sum_{k \geq 1} d(k) e^{-t k}
$$

The Mellin transform (see [4]) of $V(t)$ is readily derived to be

$$
V^{*}(s)=5^{2}(s) \Gamma(s)
$$

the Mellin inversion formula tells us

$$
V(t)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \zeta^{2}(s) \Gamma(s) t^{-s} d s .
$$

By shifting the line of integration to the left as far as we please and taking the residues into account, we obtain an asymptotic series for $V(t)$:

There is a double pole at $s=3$; the residue is

$$
\frac{\gamma}{t}-\frac{\log t}{t}
$$

There are simple poles at $s=-k, k \in \mathbb{N}_{0}$; the residues are

$$
\frac{B_{k+1}^{2}}{(k+1)^{2}} \cdot \frac{(-1)^{k}}{k!} t^{k}
$$

B_{i} denoting Bernoulli numbers. Thus

$$
V(t) \sim \frac{\gamma}{t}-\frac{\log t}{t}+\frac{1}{4}-\sum_{j \geq 1} \frac{B_{2 j}^{2}}{(2 j)^{2}} \cdot \frac{t^{2 j-1}}{(2 j-1)!}
$$

Hence

$$
\begin{aligned}
E(z) & \sim\left[\frac{t}{2}-\frac{t^{3}}{24}+\ldots\right]\left[\frac{\gamma}{t}-\frac{\log t}{t}+\frac{1}{4}-\frac{t}{144}+\ldots\right] \\
& =\frac{\gamma}{2}-\frac{\log t}{2}+\frac{t}{8}-\frac{t^{2}}{288}-\frac{t^{2} \gamma}{24}+\frac{t^{2} \log t}{24}-\frac{t^{3}}{96}+\ldots
\end{aligned}
$$

Now

$$
t=-\log \frac{1-r}{1+r}=2 r+2 \frac{r^{3}}{3}+\ldots
$$

yielding

$$
\begin{aligned}
E(z) & \sim \frac{r}{2}-\frac{1}{2} \log 2 r-\frac{1}{2} \frac{r^{2}}{3}+\frac{r}{4}+\frac{r^{3}}{12}-\frac{r^{2}}{72}-\frac{r^{2}}{24} \\
& +\frac{r^{2} \log 2 r}{6}-\frac{r^{3}}{12}+\ldots \\
= & K_{1}-\frac{1}{4} \log (1-4 z)+\frac{1}{4} \sqrt{1-4 z}+K_{2} \cdot(1-4 z) \\
& \quad+\frac{1}{12}(1-4 z) \log (1-4 z)+0 \cdot(1-4 z)^{3 / 2}+\ldots
\end{aligned}
$$

To get $\left[z^{n}\right] E(z)$ we have to find $\left[z^{n}\right] \log (1-4 z),\left[z^{n}\right] \sqrt{1-4 z}$ and so on:

$$
\left[z^{n}\right] E(z) \sim \frac{1}{4} \cdot \frac{4^{n}}{n}+\frac{1}{4} \cdot(-4)^{n}\left({ }_{n}^{1 / 2}\right)+\frac{1}{12} \cdot \frac{4^{n}}{n(n-1)}+0+\ldots
$$

Now

$$
\binom{1 / 2}{n}=\frac{-1}{2 n-1} \frac{(-1)^{n}}{4^{n}}\binom{2 n}{n}
$$

and

$$
\binom{2 n}{n} \sim \frac{4^{n}}{\sqrt{\pi n}} \cdot\left(1-\frac{1}{8 n}+\ldots\right)
$$

thus

$$
\begin{gathered}
\left({ }_{n}^{1 / 2}\right) \sim \frac{(-1)^{n+1}}{2 n}\left(1+\frac{1}{2 n}+\cdots\right) \frac{1}{\sqrt{\pi n}}\left(1-\frac{1}{8 n}+\cdots\right) \\
\quad=\frac{(-1)^{n+1}}{2 \sqrt{\pi n}^{3 / 2}}\left(1+\frac{3}{8 n}+\cdots\right)
\end{gathered}
$$

This gives

$$
\begin{aligned}
\overline{h_{n}} & =\frac{\left[z^{n}\right] E(z)}{\left[z^{n}\right] B(z)}=\frac{\left[z^{n}\right] E(z)}{-\frac{1}{2}(-4)^{n}\left({ }_{n}^{1 / 2}\right)} \\
& =\frac{1}{4} \frac{4^{n}}{n} \frac{2}{4^{n}} 2 \sqrt{\pi n}^{3 / 2}\left(1-\frac{3}{8 n}+\ldots\right)-\frac{1}{2} \\
& +\frac{1}{12} \frac{4^{n}}{n^{2}}(1+\ldots) \frac{2}{4^{n}} 2 \sqrt{\pi n^{3 / 2}}(1+\ldots)+\frac{0}{n}+\ldots \\
& =\sqrt{\pi n}-\frac{3}{8} \sqrt{\frac{\pi}{n}}-\frac{1}{2}+\frac{1}{3} \sqrt{\frac{\pi}{n}}+\frac{0}{n}+\ldots \\
& =\sqrt{\pi n}-\frac{1}{2}-\frac{1}{24} \sqrt{\frac{\pi}{n}}+\frac{0}{n}+\ldots
\end{aligned}
$$

Remark that the nature of the expansion of $E(z)$ tells us, that the asymptotic series for $\overline{h_{n}}$ is in powers of $1 / \sqrt{n}$.
[1] N.G.De Bruijn, D.E.Knuth, S.O. Rice : The average height of planted plane trees, in: Graph Theory and Computing (R.C.Read, Ed.), 15-22, New York-London: Academic Press, 1972.
[2] P.FLAJOLET, A.OdLYZKO : The average height of binary trees and other simple trees, J. of Comput. Syst. Sci. 25(1982),171-213.
[3] P.Flajolet, H.Prodinger : The average number of registers to evaluate unary-binary trees, in preparation, 1983.
[4] P.Henrici : Applied and Computational Complex Analysis, Vol. 2, John Wiley, New York, 1972.
[5] R.KEMP : On the average stack size of regularly distributed binary trees, in Proc. of the 6th ICALP (Graz, Austria, 1979), Lecture Notes in Comp. Sci., Springer 1979.
[6] D.E.KNUTH : The Art of Computer Programming, Vol.1, 2nd ed., Reading, Mass., Addison-Wesley, 1973.
[7] A.ODLYZKO : Periodic oscillations of coefficients of power series that satisfy functional equations, Adv. in Math. 44(1982),180-205.

$$
\begin{aligned}
& \sim \frac{1}{3} t^{-2}-\frac{\zeta(-1)}{\log 2} \log t \quad(a=2) \\
& \sim \frac{1}{3} t^{-2}-\frac{1}{2} t^{-1}+\frac{\zeta(-1)}{2 \log 2} \log t \quad(a=3) .
\end{aligned}
$$

Hence

$$
N(z) \sim \frac{3}{4} \zeta(-1) \log _{2} t \sim-\frac{1}{16} \log _{2} \varepsilon .
$$

Theorem 5. The average number of nodes "above" the node which first equals the register value is asymptotic 10

$$
\frac{\sqrt{\pi}}{32 \log 2} \sqrt{n}, \quad n \rightarrow \infty . \approx 0.019909699 \sqrt{n}
$$

7. Epilogue

From the explicit formulae for the generating functions mentioned in the introduction we find for instance

$$
S_{p+1}(z)=(B(z)-1)^{2 p} R_{p}(z)
$$

We will sketch a simple combinatorial argument for that: Take a tree with register function p and consider its unique largest subtree in the forest of critical nodes. This tree is a complete binary tree with 2^{p} leaves. If we replace each leaf by an arbitrary nonempty tree (counted by $B(z)-1$), we thereby obtain a tree with strictly larger register function. This mapping is injective; it is surjective as well. So we have a bijection and therefore the announced formula. (The inverse mapping could be described in a clumsy way by cutting down a tree with register function $>p$ in a certain sense of maximality, yielding the 2^{p} nonempty trees and a tree with register function p.)

We will now prove the explicit formulae starting from our just established equality. This is therefore a second easy derivation of the explicit formulae. (The first one is due to P. Kirschenhofer and H. Prodinger, see [12]). We have

$$
S_{p+1}=u^{2 p} R_{p} \quad \text { and } \quad S_{p}=u^{2 p-1} R_{p-1}
$$

taking differences we see:

$$
R_{p}=u^{2 p-1} R_{p-1}-u^{2 p} R_{p}
$$

$$
\begin{aligned}
& =R_{p-1} \frac{u^{2 p-1}}{1+u^{2 p}} \\
& =\frac{u^{1+2+4+\ldots+2 p-1}}{\left(1+u^{2}\right)\left(1+u^{4}\right) \ldots\left(1+u^{2 D}\right)} \\
& =\frac{u^{2 p-1}}{\left(1-u^{2 p+1}\right) /\left(1-u^{2}\right)}=\frac{1-u^{2}}{u} \frac{u^{2 p}}{1-u^{2 p+1}} .
\end{aligned}
$$

References

[1] P. Flajolet, Analyse d'algorithmes de manipulation d'arbres et de fichiers, Cahiers de BURO, 34-35 (1981), 1-209.
[2] P. Flajolet, J. -C. Raoult, J. Vuillemin, On the average number of registers required for evaluating arithmetic expressions, FOCS-Conference 1977, 196-205.
[3] P. Flajolet, J. -C. Raoult, J. Vuillemin, The number of registers required for evaluating arithmetic expressions, Theoretical Computer Science 9 (1979), 99-125.
[4] P. Flajolet, A. Odlyzko, The average height of binary trees and other simple trees, J. Comput. Syst. Sci. 25 (1982), 142-158.
[5] P. Flajolet, H. Prodinger, Register allocation for unary-binary trees, SIAM J. on Computing, 15 (1986), 629-640.
[6] P. Flajolet, M. Régnier, R. Sedgewick, Mellin transform techniques for the analysis of algorithms, in preparation.
[7] J. Francon, Sur le nombre de registres nécessaires à l'evaluation d'une expression arithmétique, RAIRO Inf. Theor. 18 (1984), 355-364.
[8] R. Kemp, The average number of registers to evaluate a binary tree optimally, Acta Informatica 11 (1979), 363-372.
[9] A. Meir, J. W. Moon, J. R. Pounder, On the order of random channel networks, SIAM J. Alg. Discr. Meth. 1 (1980), 25-33.
[10] J. W. Moon, On Horton's law for random channel networks, Annals of Discrete Mathematics 8 (1980), 117-121.
[11] H. Prodinger, Abzählprobleme bei Bäumen, Publ. de l'IRMA (StraBburg, G. Baron, P. Kirschenhofer, Ed.), (1983), 167-173.
[12] H. Prodinger, Die Bestimmung gewisser Parameter bei binären Băumen mit Hilfe analytischer Methoden, Lecture Notes in Mathematics 1114 (1985), 118-133.
[13] H. Prodinger, Quelques techniques analytiques pour l'etude asymptotique des parametres dans les arbres, Proceedings Ecole de Printemps Ile de Re, P. Flajolet, Ed.
[14] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge University Press, 1927.

