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Abstract

Higher order Fibonacci numbers have the characteristic equation Xn−Xn−
· · · − X − 1 = 0, where n = 2 means the classical case. Special interest is in
α = αn, the dominant (=largest, positive) root of this equation, which is the
golden ratio for n = 2.

Let also be β = βn = 1/αn, then, as n → ∞, αn → 2 and βn → 1
2 . In

this paper, series expansions of (2− α)r and (β − 1
2)

r are obtained for arbitrary
exponents r. This extends results recently obtained in [2].

1 Introduction

The generalized Fibonacci sequence of order n is defined by

G
(n)
i = G

(n)
i−1 + · · ·+G

(n)
i−n

with appropriate initial terms. Here the associated characteristic polynomial is Xn −
Xn−1 − · · · −X − 1. It is well-known [4, 5] that this polynomial has a single positive
zero αn, which is strictly between 1 and 2.

In [2], the following theorem was proven.

Theorem 1 Let n ≥ 2, and define α = αn, the positive real zero of Xn−Xn−1−· · ·−
X − 1. Let β = 1/α. Then

(a)

β =
1

2
+

1

2

∑
k≥1

1

k

(
k(n+ 1)

k − 1

)
1

2k(n+1)
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(b)

α = 2− 2
∑
k≥1

1

k

(
k(n+ 1)− 2

k − 1

)
1

2k(n+1)
.

(c)
1

2− α
= 2n − n

2
− 1

2

∑
k≥1

1

k

(
k(n+ 1)

k + 1

)
1

2k(n+1)
.

The proof was based on the Lagrange Inversion Formula. Here, we use a different
method, namely the Generalized Binomial Series, as described in [1], where it is also
reported that it is due to Lambert in the 1750s [3]. In the book, the results that we need
in the next section are proved using Raney’s lemma [6], but the Lagrange Inversion
Formula could be used to prove them as well. In any case, we are able to streamline
the previous analysis by just applying Lambert’s identity as well as extend the results
by providing expansions for (2 − α)r and (β − 1

2
)r for general real exponents r. Our

main new results are the expansions in (1) and (2).
For later reference, let us state that

αn − αn − 1

α− 1
= 0,

which readily simplifies to
2− α = α−n.

From this we infer

2− 1

β
= βn

and in simplified form

β =
1 + βn+1

2
.

2 Series expansions

Our starting point is the generalized binomial series Bt(z). We follow the description
in [1]: The series is defined by

Bt(z) =
∑
k≥0

(
tk + 1

k

)
1

tk + 1
zk,

satisfies the equation
Bt(z) = 1 + zBt(z)t,
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and, for any real number r,

Bt(z)r =
∑
k≥0

(
tk + r

k

)
r

tk + r
zk.

These definitions and results are due to Lambert [3].
In our instance, t = n+ 1.
As described in the Introduction,

β =
1 + βn+1

2
.

Specializing z = 1/2n+1, we find that

Bn+1

( 1

2n+1

)
= 1 +

(Bn+1

(
1

2n+1

)
2

)n+1

.

Therefore

β =
1

2
Bn+1

( 1

2n+1

)
,

since there is only one positive solution 0 < β < 1, and both, β and 1
2
Bn+1

(
1

2n+1

)
are

positive and satisfy the same equation and are henceforth the same.
Therefore

β =
1

2

∑
k≥0

(
(n+ 1)k + 1

k

)
1

(n+ 1)k + 1

1

2(n+1)k

=
1

2
+

1

2

∑
k≥1

(
(n+ 1)k

k − 1

)
1

k

1

2(n+1)k
,

which is the expression given before. We also have

β − 1

2
=

1

2
βn+1,

and thus for general r(
β − 1

2

)r
=

1

2(n+2)r

∑
k≥0

(
(n+ 1)k + r(n+ 1)

k

)
r

k + r

1

2(n+1)k
. (1)

For r = 1, this yields

β =
1

2
+

1

2n+2

∑
k≥0

(
(n+ 1)k + (n+ 1)

k

)
1

k + 1

1

2(n+1)k

=
1

2
+

1

2
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k
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k + 1

1
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1
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∑
k≥1

(
(n+ 1)k

k − 1

)
1

k

1

2(n+1)k
,

which is again the expansion given in [2].
Now we set α = 1/β and look for expansions related to it. First,

α = β−1 = 2
∑
k≥0

(
(n+ 1)k − 1

k

)
−1

(n+ 1)k − 1

1

2(n+1)k

= 2− 2
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k≥1

(
(n+ 1)k − 2

k − 1

)
1

k

1

2(n+1)k
,

which is the expansion given in [2].
From

β − 1

2
=

1

2
βn+1,

we have, by multiplication by α and simple rearrangements,

2− α = βn.

Thus we have for general r,

(2− α)r = βrn = 2−rnBn+1

( 1

2n+1

)rn
= 2−rn

∑
k≥0

(
(n+ 1)k + rn

k

)
rn

(n+ 1)k + rn

1

2(n+1)k
.

(2)

The instance r = −1 was given in [2]:

1

2− α
= 2n

∑
k≥0

(
(n+ 1)k − n

k

)
−n

(n+ 1)k − n
1

2(n+1)k

= 2n − n

2
+
∑
k≥2
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k

)
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(n+ 1)k − n
1

2(n+1)k−n

= 2n − n

2
+
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k + 1

)
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(n+ 1)k + 1

1
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= 2n − n

2
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2
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n
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1
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2
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2
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)
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k

1
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,

as predicted.
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