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Abstract We study certain order statistics with respect to (probability) mass distribu-
tions of multinomial type on the unit interval. The asymptotic behaviour of the average
minimum and, respectively, maximum value among n words chosen independently at
random with respect to the corresponding probability measure is analysed. This is done
by a combination of a method based on the Mellin transform and the depoissonisation
technique.
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334 L. L. Cristea, H. Prodinger

1 Introduction

In [5] the authors introduce the multinomial measure on the unit interval in the fol-
lowing way. Let q ≥ 2 be a positive integer. Denote I = I0,0 = [0, 1] and

In, j =
[

j

qn
,

j + 1

qn

)
, for j = 0, 1, . . . , qn − 2, In,qn−1 =

[
qn − 1

qn
, 1

]
,

for n = 1, 2, 3, . . . . Let r = (r0, r1, . . . , rq−1) with 0 ≤ ri ≤ 1 and
∑q−1

k=0 rk = 1.

The multinomial measure μq,r is the probability measure on I defined by

μq,r(In+1,q j+k) = rk · μq,r(In, j )

for n = 0, 1, 2, . . . , j = 0, 1, . . . , qn − 1, k = 0, 1, . . . , q − 1. For further details
about properties of the multinomial measure we refer to [5].

In Sect. 2 we introduce the generalised multinomial measure. Here a generalisation
consists, roughly speaking, in the fact that instead of dividing the unit interval into a
finite number of subintervals of equal length, we divide it into infinitely (and denumer-
ably) many intervals, such that the j-th interval has length pq j−1, where p = 1 − q.
One way to define the generalised multinomial measure is the following. We consider
the set W of all (finite and infinite) words over the infinite alphabet N0 = {0, 1, . . . }
and a probability measure Pr defined on the set of all words. A function value asso-
ciates to every word ω in W a real number value(ω) ∈ [0, 1), such that the closure
of the set of all such values, value(W), is the interval [0, 1]. Then the measure of
an interval μq,r ([0, a)), 0 ≤ a ≤ 1 can be defined in a natural way as being the
probability Pr that a word of W has the value less than or equal to a.

Section 3 is dedicated to the study of the behaviour of the average minimum value an

among n words of W chosen independently at random with respect to the multinomial
measure μr,q , for r j = λv j , j = 0, 1, . . . ., where 0 < v < 1, and v = 1 − λ, which
we denote by μv,q . First, we establish a recursion for an . In the sequel, we use the
exponential generating function and combine a method based on the Mellin transform
(see, e.g., Flajolet et. al [3]) and the depoissonisation technique (see, e.g., Jacquet and
Szpankowski [4] and Szpankowski [6]) for the study of the asymptotics of the average
minimum value an .

In the last section the issues of the previous section are studied for the average
maximum value among n words of W chosen independently at random with respect
to the measure μv,q . We note that the final formulae obtained for the asymptotics show
a certain duality with respect to those of the previous section.

We mention that similar questions were also addressed by Bassino and Prodinger
who studied order statistics [1], where the interest was in general q-ary expansions with
missing digits, and by authors of the present work in a paper on the Cantor-Fibonacci
measure [2].

2 The generalised multinomial measure

Let A be a denumerable set {a1, a2, . . . } which we call alphabet. For simplicity we
will assume, without loss of generality, A = {0, 1, . . . } along this paper, i.e., A = N0.
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Generalised multinomial measure 335

We introduce some notations: Let W denote the set of all (finite and infinite) words
over the alphabet A and Wm the set of all words of length m (m ≥ 1) over the alphabet
A. For the integers l, m ≥ 1, l ≥ m and a word ω ∈ W , ω = ω1ω2 . . . of length l or
∞ let ω(m) denote the word ω1 . . . ωm . Obviously we have W1 = A. We denote by
W∞ the set of all words of infinite length over A.

A measure on W may be constructed in the following way: Let r = {r0, r1, . . . }
be an arbitrarily fixed sequence of real numbers such that r j > 0 for all j ≥ 0 and∑∞

j=0 r j = 1.
We introduce a probability measure on W in an inductive manner.

Definition 1 For any ω,ω′ ∈ W, ω = ω1ω2 . . . , and for any k ∈ N0,

Pr(ω1 = k) := rk and Pr(ω = kω′) := rk · Pr(ω2ω3 · · · = ω′), (2.1)

where kω denotes the (usual) concatenation of the letter k with the word ω′.

Now we construct a function that assigns a real value to every word of W . Again
we proceed inductively. Let q ∈ (0, 1) be an arbitrarily fixed real number and let
p = 1 − q. We define, for any m ≥ 1, the function valuem : Wm → [0, 1), by

value1(k) = 1 − qk and valuem(kω) = value1(k) + pqk · valuem−1(ω),

(2.2)

for ω ∈ Wm−1.

Definition 2 The function value : W → [0, 1) is the (uniqe) real function with the
property that for any m ≥ 1 its restriction to Wm coincides with valuem .

We remark that the closure (with respect to the canonic topology on R) of the set
value(W) is the interval [0, 1].

Remark An order relation on W denoted by ≤∗ can be introduced as follows:

(1) On W1 = A = N0 ≤∗ coincides with the canonical order relation on N0.
(2) For m ≥ 2 and ω,ω′ ∈ Wm , ω = ω1 . . . ωm , ω′ = ω′

1 . . . ω′
m we have if ω ≤∗ ω′

either if ω1 ≤∗ ω′
1 or if there exists a j ∈ {1, . . . , m − 1} such that ωi = ω′

i , for
all 1 ≤ i ≤ j and ω j+1 ≤∗ ω′

j+1.
(3) For ω,ω′ ∈ W we have ω ≤∗ ω′ if there exists an integer m ≥ 1 such that

ω(m) ≤∗ ω′(m).

One can easily verify that the function value is strictly increasing with respect to ≤∗
and to the canonical order relation of real numbers.

The probability measure Pr on W induces a probability measure μr,q on [0, 1],
given as follows.
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336 L. L. Cristea, H. Prodinger

Definition 3 The generalised multinomial measure (of parameters r and q) is the
measure μr,q defined by

μr,q
([0, a)

) := Pr

(
{ω ∈ W | value(ω) ≤ a}

)
, (2.3)

for any a ∈ [0, 1].
Remark In the special case rl = ql · p, for all l ∈ N0, one can show that μr,q coincides
with the uniform distribution on the unit interval. Throughout this paper we consider
the case rk = λνk , where 0 < ν < 1 and λ = 1 − ν.

Remark The multinomial measure can also be defined in the following equivalent
manner. Given a real number 0 ≤ x < 1, choose the smallest i such that 1−qi+1 ≥ x ,
and say that the first digit is i . The weight of digit i isλνi . We continue with (x−pqi )/q.
Moreover, if that process led to digits d1d2 . . . , we define the value of x to be

(1−qd1)+ pqd1 [(1 − qd2)+ pqd2 [(1−qd3)+· · · =
∑
i≥1

pi−1qd1+···+di−1(1 − qdi ).

3 Order statistics of the generalised multinomial measure: the minimum

In the following we study order statistics of the function value with respect to the
measure μr,q , for r j = λν j , j = 0, 1, . . . , where 0 < ν < 1, and ν = 1 − λ, which
we denote μν,q .

3.1 The problem setting

We pick at random (with respect to the probability measure on W defined above),
independently, n words from Wm , for n ≥ 1. We apply the function value defined
above to each of the chosen words and look for the minimum among these n values.
The same can be done with all random choices of n words of W∞. Let us denote by
a(m)

n the average minimal value among all possible choices of n words of length m. By
taking the limit an := limm→∞ a(m)

n we obtain the average minimal value among all
choices of n words of W∞. We are interested in the study of the asymptotic behaviour
of an , for n → ∞.

The first step is to establish the recursion

a(m)
n =

n∑
k=1

(
n

k

) ∞∑
j=0

(λν j )k(ν j+1)n−k(1 − q j + pq j · a(m−1)
k

)
.

This is obtained from the relations in (2.2) based on the following idea. Let j be the
minimum among the first letters of the n words, i.e., there is an integer k, 1 ≤ k ≤ n
such that k words start with j , and the other n−k words start with a letter greater than j .
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Generalised multinomial measure 337

By taking the limit for m → ∞ in the above recursion we obtain

an =
n∑

k=1

(
n

k

)
λkνn−k

∞∑
j=0

ν jn(
1 − q j + pq j · ak

)
.

This yields

an =
n∑

k=1

(
n

k

)
λkνn−k

(
1

1 − νn
− 1

1 − qνn
+ p

1 − qνn
ak

)
,

and thus

an = 1 − 1 − νn

1 − qνn
+ p

1 − qνn

n∑
k=1

(
n

k

)
λkνn−kak .

We obtain

an = pνn

1 − qνn
+ p

1 − qνn

n∑
k=1

(
n

k

)
λkνn−kak .

Thus we have proven the following result.

Proposition 1 The average minimum value among n words of infinite length over N0
with respect to the generalised multinomial measure μν,q satisfies the recursion

an = pνn

1 − qνn
+ p

1 − qνn

n∑
k=1

(
n

k

)
λkνn−kak, for all integers n ≥ 1. (3.1)

We set a0 = 0, which is convenient for computational reasons. One can rewrite Eq.
(3.1) as

an = pνn

1 − pλn − qνn
+ p

1 − pλn − qνn

n−1∑
k=0

(
n

k

)
λkνn−kak (3.2)

in order to compute the elements an inductively, for n = 1, 2, . . . .

3.2 The asymptotics of the average minimum an

In order to study the asymptotic behaviour of the average minimum we introduce the
exponential generating function

A(z) =
∑
n≥0

an
zn

n! .
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338 L. L. Cristea, H. Prodinger

Therefore, we first rewrite Eq. (3.1) as

an(1 − qνn) = pνn + p
n∑

k=1

(
n

k

)
λkνn−kak .

Then multiplication by zn

n! and summing up over all integers n ≥ 1 yields

A(z) − q A(νz) =
∞∑

n=1

p
νnzn

n! + p
∞∑

n=1

n∑
k=1

(
n

k

)
λkνn−kak

zn

n! ,

and thus

A(z) − q A(νz) = p(eνz − 1) + peνz A(λz). (3.3)

We multiply the last equation by e−z and obtain that the Poisson transformed function
Â(z) = e−z A(z) satisfies the equation

Â(z) − p Â(λz) = qe−z A(νz) + p(e−(1−ν)z − e−z), (3.4)

or, equivalently,

Â(z) − p Â(λz) = R1(z), (3.5)

where R1(z) = qe−z A(νz)+ p(e−λz − e−z) = qe−λz Â(νz)+ p(e−λz − e−z). As we
are looking for the asymptotics of the average minimum an , we are going to study the
behaviour of Â(z) as z → ∞. This is based on the fact that an ∼ A(n), which can be
justified by using the technique of depoissonisation (for details about depoissonisation
we refer to Jacquet and Szpankowski [4] and Szpankowski [6]). The idea is to extract
the coefficients an from A(z) using Cauchy’s integral formula and the saddle point
method. Let A∗ denote the Mellin transformed function Â, i.e.,

A∗(s) = M[ Â(z); s] =
∫ ∞

0
Â(z) · zs−1dz.

Then by applying the Mellin transform in Eq. (3.4) we obtain

A∗(s) − pλ−s A∗(s) = R∗
1(s),

where R∗
1(s) is the Mellin transformed function R1 (for details regarding the Mellin

transform we refer to Flajolet et al. [3]). We obtain

A∗(s) = R∗
1(s)

1 − pλ−s
.
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Generalised multinomial measure 339

Now the function Â(z) can be obtained by applying the Mellin inversion formula,
namely

Â(z) = 1

2π i

∫ c+i∞

c−i∞
A∗(s) · z−sds = 1

2π i

∫ c+i∞

c−i∞
R∗

1(s)

1 − pλ−s
· z−sds, (3.6)

where 0 < c <
log p
log λ

. We shift the integral to the right and take the residues (with

a negative sign) into account in order to estimate Â(z) in (3.6). The function under
the integral has simple poles at sk = log p

log λ
+ 2kπ i

log λ
, k ∈ Z. For these the residues with

negative sign are

1

log 1
λ

R∗
1

( log p

log λ
+ 2kπ i

log λ

)
z− log p

log λ
− 2kπ i

log λ ,

with R∗
1(s) = ∫ ∞

0

(
qe−λz Â(νz) + p(e−λz − e−z)

)
zs−1dz.

For k = 0 the residue with negative sign is,

z− log p
log λ

log 1
λ

∫ ∞

0

(
qe−λz Â(νz) + p(e−λz − e−z)

)
z

log p
log λ

−1dz.

This term plays an important role in the asymptotic behaviour of the average minimum
an , as the contributions from the other poles only constitute small fluctuations. By
collecting all these residues into a periodic function, one gets the series

1

log 1
λ

∑
k∈Z

z−logλ p− 2kπ i
log λ

∫ ∞

0

(
qe−λz Â(νz) + p(e−λz − e−z)

)
zlogλ p+ 2kπ i

log λ
−1dz.

Putting everything together, we have obtained the following result.

Theorem 1 The average an of the minimum value among n random words of infinite
length over N0 with respect to the generalised multinomial measure μν,q admits the
asymptotic estimate

an = �(− logλ n)n− logλ p
(

1 + O(1

n

))
, (3.7)

for n → ∞, where �(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of � is given by the expression

1

log 1
λ

∫ ∞

0

(
qe−λz Â(νz) + p(e−λz − e−z)

)
z

log p
log λ

−1dz. (3.8)
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340 L. L. Cristea, H. Prodinger

Remark One can compute the integral in the zeroth Fourier coefficient numerically by
taking for Â(z) the first few terms of its Taylor expansion, which can be found from
the recurrence (3.2) for the numbers an . In order to do this we rewrite (3.8) as

q

log 1
λ

(
�

( log p

log λ

)
+

∑
k≥0

ak
νk

k! �
(

k + log p

log λ

))
.

Remark For the special case when λ = p (and thus μν,q is the uniform distribution on
the unit interval) we obtain an = 1

n+1 , for n ≥ 1. This can be shown by induction. From

(3.2) one immediately gets a1 = 1
2 . Assuming that ak = 1

k+1 , for k = 1, 2, . . . , n −1,
the induction step is then, by the recursion in (3.2) equivalent to showing that

1 − pn+1 − qn+1 = (n + 1)pqn + (n + 1)p
n−1∑
n=0

(
n

k

)
pkqn−kak,

i.e.,

1 − pn+1 − qn+1 = (n + 1)pqn + (n + 1)p
n−1∑
n=1

(
n

k

)
pkqn−k 1

k + 1
,

which is immediately checked using the binomial formula for (p + q)n+1 = 1

and n+1
k+1

(n
k

) = (n+1
k+1

)
. Moreover, in this particular case the constant in (3.8) is

q

log 1
p

⎛
⎝1 +

∑
n≥0

1

n + 1
qn

⎞
⎠ = q

log 1
p

(
1 − log p

q
− 1

)
= 1.

4 Order statistics of the generalised multinomial measure: the maximum

4.1 The problem setting

As in the previous case, we pick at random (with respect to the probability measure on
W defined above), independently, n words from Wm , for n ≥ 1. We apply the function
value defined above to each of the chosen words and look for the maximum among
these n values. The same can be done with all random choices of n words of W∞.
Let us denote in this section by b(m)

n the average minimal value among all possible
choices of n words of length m. By taking the limit bn := limm→∞ b(m)

n we obtain
the average maximal value among all choices of n words of W∞.

First, we establish the recursion

b(m)
n =

n∑
k=1

(
n

k

) ∞∑
j=0

(λν j )k(1 − ν j )n−k(1 − q j + pq j · b(m−1)
k

)
, for n ≥ 1.

123



Generalised multinomial measure 341

This is obtained from the relations in (2.2) based on the following idea. Let j be the
maximum among the first letters of the n words, i.e., there is an integer k, 1 ≤ k ≤ n,
such that k words start with j , and the other n − k words start with a letter less than j .

For m → ∞ in the above recursion we obtain

bn =
n∑

k=1

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k(1 − q j + pq j bk), for n ≥ 1. (4.1)

4.2 The asymptotics of the average maximum bn

As in the case of the average minimum, we are interested in the study of the asymptotic
behaviour of bn , for n → ∞.

Since bn is expected to be close to 1, we set cn = 1 − bn for n ≥ 1 and look for
a recursion for cn . Then, we study the asymptotic behavior of cn . The recursion (4.1)
can be rewritten as

1 − cn =
n∑

k=1

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k(1 − q j + pq j (1 − ck)
)
, for n ≥ 1. (4.2)

We have

n∑
k=1

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k(1 − q j + pq j )

=
∑
j≥0

n∑
k=1

(
n

k

)
(λν j )k(1 − ν j )n−k(1 − q j+1)

=
∑
j≥0

(
(1 + λν j − ν j )n − (1 − ν j )n

)
(1 − q j+1)

=
∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
(1 − q j+1)

=
∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
−

∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
q j+1

= 1 −
∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
q j+1,

and thus we have proven the following result.

Proposition 2 If bn is the average maximul value among n words of infinite length
over N0 with respect to the generalised multinomial measure μν,q and cn = 1 − bn,
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342 L. L. Cristea, H. Prodinger

for n ≥ 1, then cn satisfies the recursion

cn =
∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
q j+1

+
n∑

k=1

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k pq j ck, for n ≥ 1. (4.3)

In order to find an explicit formula that allows us to compute the values cn we set
c0 := 0 and rewrite the above equation

cn

(
1 −

∑
j≥0

(λν j )n pq j
)
=

∑
j≥0

(
(1 − ν j+1)n − (1−ν j )n

)
q j+1

+
n−1∑
k=0

(
n

k

)∑
j≥0

(λν j )k(1 − ν j )n−k pq j ck (4.4)

and thus obtain

cn = 1 − qνn

1 − pλn − qνn

(∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
q j+1

+
n−1∑
k=0

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k pq j ck

)
, (4.5)

which enables us to compute the value of cn , for n = 1, 2, . . . , inductively. For the
exponential generating function C(z) := ∑

n≥0 cn
zn

n! we obtain from (4.3)

C(z) =
∑
n≥1

zn

n!
∑
j≥0

(
(1 − ν j+1)n − (1 − ν j )n

)
q j+1

+
∑
n≥1

zn

n!
n∑

k=0

(
n

k

) ∑
j≥0

(λν j )k(1 − ν j )n−k pq j ck

=
∑
j≥0

∑
n≥1

( zn

n! (1 − ν j+1)n − zn

n! (1 − ν j )n
)

q j+1

+
∑
j≥0

∑
n≥1

zn

n!
n∑

k=0

(
n

k

)
(λν j )k(1 − ν j )n−k pq j ck

=
∑
j≥0

(
e(1−ν j+1)z − e(1−ν j )z

)
q j+1

+
∑
j≥0

∑
n≥1

n∑
k=0

ck
(λν j )k zk

k! · (1 − ν j )n−k zn−k

(n − k)! pq j ,
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Generalised multinomial measure 343

i.e.,

C(z) =
∑
j≥0

(
e(1−ν j+1)z − e(1−ν j )z

)
q j+1 +

∑
j≥0

pq j e(1−ν j )zC(λν j z). (4.6)

Then for the Poisson transformed Ĉ(z) = e−zC(z) we have

Ĉ(z) =
∑
j≥0

(
e−ν j+1z − e−ν j z)q j+1 +

∑
j≥0

pq j e−ν j zC(λν j z). (4.7)

Now we proceed as in Sect. 3 to apply the depoissonisation. Let C∗(s) =
M[Ĉ(z); s] be the Mellin transformed function of Ĉ , with the notations in [3]. We
apply the Mellin transform to Eq. (4.7) to obtain

C∗(s) = �(s)
∑
j≥0

q j+1
(
ν−s( j+1) − ν−s j

)
+

∑
j≥0

pq jM[e−ν j zC(λν j z); s]. (4.8)

Since
∫ ∞

0 zs−1zne−ν j zdz = ν− j (n+s)�(n + s), we obtain

∑
j≥0

pq jM[e−ν j zC(λν j z); s] =
∑
j≥0

∑
n≥0

cn
λnν jn

n! pq jν− j (n+s)�(n + s)

= p

1 − qν−s

∑
n≥0

cn
λn

n! �(n + s),

and thus,

C∗(s) = q�(s)
( ν−s

1 − qν−s
− 1

1 − qν−s

)
+ p

1 − qν−s

∑
n≥0

cn
λn

n! �(n+s) = R2(s)

1 − qν−s
,

(4.9)
where R2(s) = q�(s)(ν−s − 1) + p

∑
n≥0 cn

λn

n! �(n + s).
Now the function Ĉ(z) can be obtained by applying the Mellin inversion formula,

namely

Ĉ(z) = 1

2π i

∫ c+i∞

c−i∞
C∗(s) · z−sds = 1

2π i

∫ c+i∞

c−i∞
R2(s)

1 − qν−s
· z−sds, (4.10)

where 0 < c <
log q
log ν

. We shift the integral to the right and take the residues with

negative sign into account in order to estimate Ĉ(z) in (4.10). The function under the
integral has simple poles at sk = log q

log ν
+ 2kπ i

log ν
, k ∈ Z. For these the residues with

negative sign are

1

log 1
ν

R2

( log q

log ν
+ 2kπ i

log ν

)
z− log q

log ν
− 2kπ i

log ν .
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For k = 0 the residue with negative sign is,

z− log q
log ν

log 1
ν

(
q�

( log q

log ν

)
(ν

− log q
log ν − 1) + p

∑
n≥0

cn
λn

n! �
(

n + log q

log ν

))

= pz− log q
log ν

log 1
ν

(
�

( log q

log ν

)
+

∑
n≥0

cn
λn

n! �
(

n + log q

log ν

))
.

This term plays an important role in the asymptotic behaviour of cn , as the contributions
from the other poles only constitute small fluctuations. We collect all these residues
into a periodic function and obtain

1

log 1
ν

∑
k∈Z

R2

( log q

log ν
+ 2kπ i

log ν

)
z− log q

log ν
− 2kπ i

log ν .

Putting everything together, we thus get the following result.

Theorem 2 The average bn of the maximum value among n random words of infinite
length over N0 with respect to the generalised multinomial measure μv,q admits the
asymptotic estimate

bn = 1 − �(− logν n)n− logν q(
1 + O(

1

n
)
)
, (4.11)

for n → ∞, where �(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of � is given by the expression

p

log 1
ν

(
�

( log q

log ν

)
+

∑
n≥0

cn
λn

n! �
(

n + log q

log ν

))
. (4.12)

Remark For λ = p we expect to get cn = 1
n+1 , which indeed can be proven by

induction. Then the constant in (4.12) is

p

log 1
q

(
1 +

∑
n≥0

1

n + 1
pn

)
= p

log 1
q

(
1 − log q

p
− 1

)
= 1,

as it should. The proof by induction can be done as follows. One easily obtains c1 = 1
2

from the recursion (4.4). Assuming now that ck = 1
k+1 for all k ≥ 1 we have to show

that

1

n + 1

(
1 −

∑
j≥0

(pq j )n pq j
)
=

∑
j≥0

(
(1−q j+1)n −(1−q j )n

)
q j+1

+
n−1∑
k=1

(
n

k

)∑
j≥0

(pq j )k(1−q j )n−k pq j 1

k+1
,
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or, equivalently,

1 −
∑
j≥0

(pq j )n+1 =(n+1)
∑
j≥0

(
(1−q j+1)n −(1−q j )n

)
q j+1

+
n−1∑
k=1

(
n+1

k+1

) ∑
j≥0

(pq j )k+1(1 − q j )n−k .

With the binomial formula, this yields

1 −
∑
j≥0

(pq j )n+1 = (n + 1)
∑
j≥0

(
(1 − q j+1)n − (1 − q j )n

)
q j+1

+
∑
j≥0

(
(pq j + 1 − q j )n+1 − (1 − q j )n+1

)
−

∑
j≥0

(pq j )n+1

−(n + 1)
∑
j≥0

pq j (1 − q j )n,

which can be rewritten as

1 = (n + 1)
∑
j≥0

(
(1 − q j+1)n − (1 − q j )n

)
q j+1

+ lim
J→∞

J∑
j=0

(
(1 − q j+1)n+1 − (1 − q j )n+1

)
− (n + 1)

∑
j≥0

pq j (1 − q j )n,

and, since the first term in the last sum is zero, it becomes

1 = (n + 1)
∑
j≥0

(
(1 − q j+1)n − (1 − q j )n

)
q j+1

+ lim
J→∞

J∑
j=0

(
(1 − q j+1)n+1 − (1 − q j )n+1

)
− (n + 1)

∑
j≥0

pq j+1(1 − q j+1)n .

We thus obtain

1 = (n + 1)
∑
j≥0

(
(1 − q j+1)n − (1 − q j )n − p(1 − q j+1)n

)
q j+1

+ lim
J→∞(1 − q J+1)n+1,

which is equivalent to

0 =
∑
j≥0

(
q(1 − q j+1)n − (1 − q j )n

)
q j+1
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and
0 =

∑
j≥0

(1 − q j+1)nq j+2 −
∑
j≥1

(1 − q j )nq j+1

which obviously holds.
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