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GENERALIZING THE SUM OF DIGITS FUNCTION*

HELMUT PRODINGERt

Abstract . The number theoretic function Gq .,(n)=Ek I zQ_o Ln/q" +/aJ has appeared in the
literature for some special values of a . Some properties of this function are investigated . Since Gg,o(n) is
closely related to the sum of digits of the q-ary representation of n, a generalized "sum of digits" function
can be defined via Gq,Q . For q = 2 and a = 2-' the summing function of this ".`sum of digits" function is
analyzed using a technique of Delange .

1. Introduction and elementary results. Let q E N, q 01 and define the functions
G,,,, :No -No by

n
Gq,. (n) :_ Y-

	

k +jai .
k=11si<q q

([x] denotes the greatest integer less or equal to x.)
To make this definition meaningful, a must be in the range a E [0, (q -1)-1) . But

for all considerations (except for Theorem 5) it is better to restrict a to the range
[0, q-1], especially because the generalized "sum of digits" function (see § 2) takes
then only nonnegative values, which is very desirable .

In [6] an alternative expression for G2,1/4 is given by a complicated method ; the
same method applies to G2 .1/2 showing that this function is the identity .

The last result can be found in [4, p. 43] in the general form

(2)

	

G,,1/,,(n)= Y- Y +-J=n.
kill ISi<q Ik q

In the sequel it will be shown that, starting from (2), some formulas for Gq,a can
be derived in an easy way . To be able to formulate this result adequately, it is useful
to use the following denotation .

If ~ is a string of integers in the range [0, q -1 ], let Bq (~, n) denote the number
of subblocks ~ in the q-ary representation of n (subblocks are allowed to overlap) .

THEOREM 1 .

Gq,q-'(n)=n- Y- jBq(j,n)+ E jBq((q-1)s-1j,n) .
1si<q

	

1Si<q

(For instance, G2,1/4(n) = n -B2(1, n)+B2(11, n) .)

l

Proof. It is sufficient to show that the number of indices k, 1 such that

n 11=1+lk+ 1I

q q

	

q q

equals

Y- jBq(j,n)- Z tBq((q-1)s-'t,n)
1Si<q

	

Ist<q
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This can only happen if

~k+ I] = 1+[kJ and s?2.
g q

	

q
(For s = 1 the theorem is trivially fulfilled .) Now assume that the fractional part of
n/q k starts with the digit j, 1 < j < q -1 (with respect to the q-ary representation of
n) . Then in (1) each 1 with j +1 ? q is possible (there are j of such 1's), and furthermore

Iqk +qs
J
= lqk ~ .

Now assume / = q - 1 . Then there are again q -1 indices in (1) such that j + 1 ? q, but

k +qsJ =l+Igk J

is also possible, and this happens if and only if the fractional part of n/q k starts with
q -1, q -1, • • • , q -1, t ; in (1) each 1 with t + 1 ? q is possible (there are t of such 1's) .

Since the sum over k in (1) means that every digit is exactly one time the leading
digit of the fractional part of n/q k , the proof is finished .

Remark that the formula holds also for a = 0 where the second sum vanishes,
which can be seen as a "limiting case" .

In the sequel it will be shown that Gq,a for 0 :-5 a < q-1 has a rather erratic behavior,
which contrasts to the case a = q - ' .

LEMMA 2. Assume a 0 q -1 . Then there exists an n such that

Gq .a (n) = Gq ,a (n + 1) .

Since the proof of this lemma is rather long and not too interesting, we just
indicate that an appropriate choice for n is (with respect to the q-ary representation)
of the form (1000 . . . 0) q .

THEOREM 3 . For 0-<a <q - ' the function G q ,,, is not sur/ective.
Proof. By Theorem 1,

q'= Gq.li q (q`) = Gq.a (qt) : Gq.o(q`) = q' -1 .

Thus there are numbers t l < t2 such that

Gq.cz(g`2 ) - Gq,a(q'I)=q `2- q

Because of the monotony of Gq,a , surjectivity in the interval [t 1 , t 2 ] means also
injectivity, but this property is not fulfilled .

Remark. If a is allowed to be in the range a E [0, (q -1) -1 ), a 0 q - 1 (compare
the comments after the definition of Gq. ), Lemma 2 and Theorem 3 are still true .

It is clear that from a :-5,6 it follows that Gq ,a (n) < G q , a (n) . The following stronger
result is easily obtained .

THEOREM 4 . If a < 0 then there is an n such that Gq,a (n) < Gq,a (n) .
Proof. Choose numbers n, k such that

1k<1-a ;
q

then

lqk +/3!=1 and Iqk+al =0 .
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As D. E. Knuth has pointed out [5], it would be interesting to investigate Gq,a (n)
for fixed n, where a is the variable . A first result in this direction is the following
theorem .

THEOREM 5 .

Proof. Since

it follows that

f 1 G2,,,, (n) da = j 1 E lk+ a] dot
0

	

o k~1 2
1

= fv+a~da= k= n.
kA1 0 2

	

k~1 2

(It is not very hard to see that the integration and the summation can be interchanged .)

2 . The summing function of the function "generalized sum of digits" . In Delange
[1] the summing function of the function "sum of digits to the base q" is considered :
The sum of digits is

Sq(n)
rw (I- l

glgn 1 J/1L

= n - (q - 1)

	

[ J
r=1 q

n
r

00 q~-^1

	

n=n- E L r+1
r=0 j=1 q

=n- Z jBq (j,n)=n - Gq.o(n) .
15j<q

(3)

GENERALIZING THE SUM OF DIGITS FUNCTION

	

37

,. 1

J0
G2 ,a (n) da = n .

J ,

. 1

Lx +aJ da=x,
0

In view of § 1 it is natural to define the generalized function "sum of digits" by

Sq , a (n) := n - Gq,a (n) .

In [1] it is proved that

1 M-1

Fo
Sq (n) = q 2 logq m +F(logq m),m n

where F(x) is continuous, periodic with period 1 and thus bounded . (109q m means
the logarithm to the base q.) Further information in this area can be found in the
beautiful thesis of Flajolet [2] .

In the rest of this paper the summing function of S2.2-=(n) is treated, but I hope to
do further work in this direction in the future . The ordinary sum of digits appears as
the limit for s -+W.

From Theorem 1, we know that

G2.2-=(n) = n -B2(1, n)+B 2(1 S, n) .
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Plugging this into the definition of Sq, we find that

(4)

So S2,2-=(n) is just the number of ones in the binary expansion of n minus the number
of blocks of s consecutive ones in that expansion .

The rest of this paper is an analysis of the summing function of the function
B2(1 5 , n) ; then by (4), an analogue to Delange's result of S-2.2--(n) can be formulated
as a corollary .

THEOREM 6 . Let B2(15 , n) denote the number of subblocks of s consecutive ones
appearing in the binary representation of n, where overlapping is allowed. Then the
summation of B 2(15 , n) is given by the formula

1 m-I

	

5

	

loge m- (s -1)

	

E- nT Q B2(1 , n) =

	

2s

	

+HS (log 2 m)+m,

where H5 is continuous, periodic with period 1, and satisfies H,(0) = 0, and where E is
bounded by 0 :_5 E < 1 .

Proof. A crucial point in Delange's derivation is the property

(5)

	

l 7l I grJ for n~t<n+1 .

For a * 0 it is not trivial to find an appropriate analogue .
An analogue to property (5) can be written as follows :

(6)

52.2- ' (n) = B2(1, n)-B2 (1 5 , n)

=S2(n)-B2(1 5 , n) .

12r +25J = L2r +2s

holds for n < t < n + 1 and r ? s and also for n - (1 /25-r) - t < n + 1- (112 s ") and r < s .
Let' =1og 2 m. We have

m-1

	

m-1

	

rn-1
2: B2(1 5, n) = Z G2.2-(n) - Y- G2,0(n)
n=0

	

n=0

	

n=0

s-1

	

ni-2'-'

	

t

	

1

	

UI+1

	

m

	

t

	

1

	

l~l

	

rn

	

t

r l ~2'-' 12r+25] dt+ rZ
s Jp 12r+2sJ dt- r=0 JQ 1 2 r+1J

m

	

t

	

1

	

I t
r=1 2r-sl 2r+2sJ

+r1=0
f
Q ([+j2r+1

2s2r+1]) dt
.

Now define

s-'1

	

L

m 1

J- rLr l 2r-5

	

+2r 2t ,

gs (x) =
JQx

(
L
t+ZS J - 1tj -25 ) dt .

dt
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gs (x) is periodic with period 1, continuous and gg (0) = 0. With this notation we can write

ft/I~OB2(1s,n)-rEo

	

L2•+ t+2SJ-L2r+1J 2S
)dt+(L1J+1)2S -C

Lrl

	

m

	

m- r~ 2r+1 gs(
2r+1) + ( Ll J + 1) m - C

Lr1
_

r

~

CO

2r+1gs(2m
1)

+ ( L l J + 1)
2S

- C

00

F- 2 1+LI1-kgs (m2k-LI1-1 )+(Llj +1) `-'s-C
M

k=0

	

2

Now remember that m = 2' and define {11 =1- Ll ] and

h,,(x) _ Y- 2-kg,(x2k ) .

Then

Now defining

k ;0

M-1

	

m
F B2(1 S,n)=m2 1-cr}, h s (2 { ` }- 1)+(LlJ+1)m- C,
n=0

HS (l) = 21-"'hs(2"'-1)-I ({l} - 1),

it remains only to analyze the quantity C to complete the proof .

C=S-1 2r-s[m +1 =

S-1 2r-SI M] ,
r=1

	

L2

	

2 J r=i

	

L2

since r lies in the range 1 < r < s -1 . Thus

S-1

	

m

	

S-1

	

m

	

S-1
C = r~ 1 2 r-S(2r ) - r.l 2'

-S
{2r} = m 2s -E.

Since {x} lies always in the interval [0, 1), we can deduce that the remaining error
term E must also lie in that interval .

Using Delange's result on the summing function of S2(n) from [1] we get immedi-

ately :
COROLLARY 7 . If S,,,,, (n) denotes the generalized "sum of digits" function defined

above, then the summing function of the quantity S 2 , 2--(n) is given by

m-i

M
nF- S2.2-.(n)=(2-2s) loge m+-- +F (loge m)-HS (log2 m)-m,

where both F and HS are continuous, periodic with period 1, and take the value 0 on
the integers, and where E is bounded by 0 < E < 1 .

3 . The Fourier series for HS (x) . Delange [1] has already determined the Fourier

series for F(x) . Similar methods apply to HS (x) .
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THEOREM 8 . The Fourier expansion HS(x) = Ek hk e 2kirix of the function H,(x)
converges absolutely, and its coefficients are given by

1

	

1

	

_ 1
ho =log2 r(1-2s) _ 2

5 log 2 2s+1,

2kiri

	

1

	

2kirt

h

	

1
(log 2'1 25)- C(log 2)

k	 fork * 0 .
2k7ri(1 +

2kl0g
irtl
2)

Proof. Let 0 :-5 x < 1 . Since

H.(x) = 2 1-xhs(2 x-1 ) + 1 2s x ,

the determination of the Fourier coefficients decomposes as :
1

	

1
hk =

f
21-xh s (2x-I) a-2kaix dx + I

J
(1 -x) e-2kaix dx = ak +bk •

0

	

2 0

It is easily seen that

1

	

1

	

1 1
bk _ 2 s 2k~r .

for k *0, bo = 25 2'

ak = f
2 1-x

	

2 -rgs (2r+x-1) a-2kaix dx,
p

	

r=0

and as in [1], the integration and the summation can be interchanged :

ak =

	

f 2 1-r-xgs (2r+x-1) e-2kaix dx •
r=0 0

The change of variable x = 1 - r + loge u gives

(0 1 21-'-xgs(2 .+x-t) a-2kaix dx log 2 ~22r
gut ) exp (-2k •rri '1092 u) du .J

Thus

As in [1], the integral

should be studied; then

Since

ak = 1

	

f

	

2+zk,ri i ios2 du •
log 2 i112 u

(Ps (Z)=J

	

gs(u
+) du

1/2 U

ak
log 2

(DS(1
+ log 2)

g(u) = 14 (l t+ 1' - Lti - ls) dt,
0

	

2

	

2



by partial integration for Re z > 0,

For Re z > 2, the integral can be split into three parts . The third one is

1 1 ('°° du _ 1 1 2Z-1

2 5 z 1/2 u Z

	

2 S z z-1'

The second one is

-1 floo

	

1

	

1
u Z=--

	

z-1 .
Z 1/2

	

u

	

z z- 1

The first one is

1

	

1 j
J

	

du =1 f

	

[u+1j du	1 ~(z-1, 1-1),
z 1,2

	

2 U ' Z 1_2-"

	

2 u

	

z(z - 1)

	

2

where ~(z -1, a) is the z-function of Hurwitz (see [3]) . This gives

1 2Z-1

	

(z -1)
(DS(z)=-2S'z _1 +

	

z(z-1)

This holds for Re z > 0 by analytical continuation . This gives

1

	

1

	

1

	

l +
2k7rt 1

	

2k7ri

	

1

	

2krrc
ak

	

2 S 2krri + 2krri ~log2! \~\log2' 1- 2 5 J - \log2)
for k A 0 . Now a° must be computed . From [7],

~(z-1,a)=2-a+(z-1)(logr(a)-2 log (27r))+O((z-1)2) for z->1 .

Thus

GENERALIZING THE SUM OF DIGITS FUNCTION

1 2z-1 1
1 c' (L

	

1

	

_ 1 du
(DS() =-2S z +-

	

u+2s -[u]
Z liz 2s

	

2 S U
Z

(z-1, 1-25 ) _-2+25+(z-1)(logI'(1-ZS)-21og (27r))+O((z -1)2),

~(z -1) = ~ (z -1, 1) _ -2- (z - 1)2 log (27r) + O((z -1) 2 ),

2Z- ' =1 + (log 2)(z -1) + O((z -1) 2),

1 = 1-(z -1)+ O((z -1) 2 ) .
Z

This yields after some manipulations

0S(z)=-2
S
(1+log2)+logF(1-ZS)+O((z_1) 2) for z-->1 .

Hence

a0

	

2S log 2g

Finally, since ~(it, a) = O(1t j 1/2 log It j ) [7], the Fourier series of HS will converge
absolutely .
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