GENERALIZING THE SUM OF DIGITS FUNCTION*

HELMUT PRODINGER \dagger

Abstract

The number theoretic function $G_{a . \alpha}(n)=\sum_{k \geq 1} \sum_{j=0}^{q-1}\left\lfloor n / q^{k}+j \alpha\right\rfloor$ has appeared in the literature for some special values of α. Some properties of this function are investigated. Since $G_{q .0}(n)$ is closety related to the sum of digits of the q-ary representation of n, a generalized "sum of digits" function can be defined via $G_{\mathrm{q}, \alpha}$. For $q=2$ and $\alpha=2^{-3}$ the summing function of this "sum of digits" function is analyzed using a technique of Delange.

1. Introduction and elementary results. Let $q \in \mathbb{N}, q \neq 1$ and define the functions $G_{q, \alpha}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ by

$$
\begin{equation*}
G_{q, \alpha}(n):=\sum_{k \geq 1} \sum_{1 \leq j<q}\left\lfloor\frac{n}{q^{k}}+j \alpha\right\rfloor . \tag{1}
\end{equation*}
$$

($\lfloor x\rfloor$ denotes the greatest integer less or equal to x.)
To make this definition meaningful, α must be in the range $\alpha \in\left[0,(q-1)^{-1}\right)$. But for all considerations (except for Theorem 5) it is better to restrict α to the range [$0, q^{-1}$], especially because the generalized "sum of digits" function (see § 2) takes then only nonnegative values, which is very desirable.

In [6] an alternative expression for $G_{2,1 / 4}$ is given by a complicated method; the same method applies to $G_{2,1 / 2}$ showing that this function is the identity.

The last result can be found in [4, p. 43] in the general form

$$
\begin{equation*}
G_{q, 1 / q}(n)=\sum_{k \geq 1} \sum_{1 \leq i<q}\left\lfloor\frac{n}{q^{k}}+\frac{j}{q}\right\rfloor=n . \tag{2}
\end{equation*}
$$

In the sequel it will be shown that, starting from (2), some formulas for $G_{q, \alpha}$ can be derived in an easy way. To be able to formulate this result adequately, it is useful to use the following denotation.

If ξ is a string of integers in the range $[0, q-1]$, let $B_{q}(\xi, n)$ denote the number of subblocks ξ in the q-ary representation of n (subblocks are allowed to overlap).

Theorem 1.

$$
G_{q, q^{-s}}(n)=n-\sum_{1 \leqq j<q} j B_{q}(j, n)+\sum_{1 \leqq j<q} j B_{q}\left((q-1)^{s-1} j, n\right) .
$$

(For instance, $G_{2,1 / 4}(n)=n-B_{2}(1, n)+B_{2}(11, n)$.)
Proof. It is sufficient to show that the number of indices k, l such that

$$
\left\lfloor\frac{n}{q^{k}}+\frac{l}{q}\right\rfloor=1+\left\lfloor\frac{n}{q^{k}}+\frac{l}{q^{s}}\right\rfloor
$$

equals

$$
\sum_{1 \leqq j<q} j B_{q}(j, n)-\sum_{1 \leqq c<q} t B_{q}\left((q-1)^{s-1} t, n\right) .
$$

[^0]This can only happen if

$$
\left\lfloor\frac{n}{q^{k}}+\frac{l}{q}\right\rfloor=1+\left\lfloor\frac{n}{q^{k}}\right\rfloor \quad \text { and } \quad s \geqq 2 \text {. }
$$

(For $s=1$ the theorem is trivially fulfilled.) Now assume that the fractional part of n / q^{k} starts with the digit $j, 1 \leqq j<q-1$ (with respect to the q-ary representation of n). Then in (1) each l with $j+l \geqq q$ is possible (there are j of such l 's), and furthermore

$$
\left\lfloor\frac{n}{q^{k}}+\frac{l}{q^{s}}\right\rfloor=\left\lfloor\frac{n}{q^{k}}\right\rfloor
$$

Now assume $j=q-1$. Then there are again $q-1$ indices in (1) such that $j+l \geqq q$, but

$$
\left\lfloor\frac{n}{q^{k}}+\frac{l}{q^{s}}\right\rfloor=1+\left\lfloor\frac{n}{q^{k}}\right\rfloor
$$

is also possible, and this happens if and only if the fractional part of n / q^{k} starts with $q-1, q-1, \cdots, q-1, t$; in (1) each l with $t+l \geqq q$ is possible (there are t of such l 's).

Since the sum over k in (1) means that every digit is exactly one time the leading digit of the fractional part of n / q^{k}, the proof is finished.

Remark that the formula holds also for $\alpha=0$ where the second sum vanishes, which can be seen as a "limiting case".

In the sequel it will be shown that $G_{q, \alpha}$ for $0 \leqq \alpha<q^{-1}$ has a rather erratic behavior, which contrasts to the case $\alpha=q^{-1}$.

Lemma 2. Assume $a \neq q^{-1}$. Then there exists an n such that

$$
G_{q \cdot \alpha}(n)=G_{q, \alpha}(n+1) .
$$

Since the proof of this lemma is rather long and not too interesting, we just indicate that an appropriate choice for n is (with respect to the q-ary representation) of the form $(1000 \cdots 0)_{q}$.

Theorem 3. For $0 \leqq \alpha<q^{-1}$ the function $G_{q, \alpha}$ is not surjective.
Proof. By Theorem 1,

$$
q^{t}=G_{q, 1 / q}\left(q^{t}\right) \geqq G_{q, \alpha}\left(q^{t}\right) \geqq G_{q, 0}\left(q^{t}\right)=q^{t}-1
$$

Thus there are numbers $t_{1}<t_{2}$ such that

$$
G_{q, \alpha}\left(q^{t_{2}}\right)-G_{q, \alpha}\left(q^{t_{1}}\right)=q^{t_{2}}-q^{t_{1}}
$$

Because of the monotony of $G_{q, \alpha}$, surjectivity in the interval $\left[t_{1}, t_{2}\right]$ means also injectivity, but this property is not fulfilled.

Remark. If α is allowed to be in the range $\alpha \in\left[0,(q-1)^{-1}\right), \alpha \neq q-1$ (compare the comments after the definition of $G_{q, \alpha}$), Lemma 2 and Theorem 3 are still true.

It is clear that from $\alpha \leqq \beta$ it follows that $G_{q, \alpha}(n) \leqq G_{q, \beta}(n)$. The following stronger result is easily obtained.

Theorem 4. If $\alpha<\beta$ then there is an n such that $G_{q, \alpha}(n)<G_{q, \beta}(n)$.
Proof. Choose numbers n, k such that

$$
1-\beta \leqq \frac{n}{q^{k}}<1-\alpha ;
$$

then

$$
\left\lfloor\frac{n}{q^{k}}+\beta\right\rfloor=1 \quad \text { and } \quad\left\lfloor\frac{n}{q^{k}}+\alpha\right\rfloor=0
$$

As D. E. Knuth has pointed out [5], it would be interesting to investigate $G_{q, \alpha}(n)$ for fixed n, where α is the variable. A first result in this direction is the following theorem.

Theorem 5.

$$
\int_{0}^{1} G_{2 . \alpha}(n) d \alpha=n
$$

Proof. Since

$$
\int_{0}^{1}\lfloor x+\alpha\rfloor d \alpha=x
$$

it follows that

$$
\begin{aligned}
\int_{0}^{1} G_{2, \alpha}(n) d \alpha & =\int_{0}^{1} \sum_{k \geq 1}\left\lfloor\frac{n}{2^{k}}+\alpha\right\rfloor d \alpha \\
& =\sum_{k \geq 1} \int_{0}^{1}\left[\frac{n}{2^{k}}+\alpha\right\rfloor d \alpha=\sum_{k \geq 1} \frac{n}{2^{k}}=n .
\end{aligned}
$$

(It is not very hard to see that the integration and the summation can be interchanged.)
2. The summing function of the function "generalized sum of digits". In Delange [1] the summing function of the function "sum of digits to the base q " is considered: The sum of digits is

$$
\begin{align*}
S_{q}(n) & =\sum_{r=0}^{\infty}\left(\left\lfloor\frac{n}{q^{r}}\right\rfloor-q\left\lfloor\frac{n}{q^{r+1}}\right\rfloor\right) \\
& =n-(q-1) \sum_{r=1}^{\infty}\left\lfloor\frac{n}{q^{r}}\right\rfloor \\
& =n-\sum_{r=0}^{\infty} \sum_{j=1}^{a-1}\left\lfloor\frac{n}{q^{r+1}}\right\rfloor \tag{3}\\
& =n-\sum_{1 \leq j<q} j B_{q}(j, n)=n-G_{q .0}(n) .
\end{align*}
$$

In view of $\S 1$ it is natural to define the generalized function "sum of digits" by

$$
S_{q, \alpha}(n):=n-G_{q, \alpha}(n) .
$$

In [1] it is proved that

$$
\frac{1}{m} \sum_{n=0}^{m-1} S_{q}(n)=\frac{q-1}{2} \log _{q} m+F\left(\log _{q} m\right)
$$

where $F(x)$ is continuous, periodic with period 1 and thus bounded. $\left(\log _{q} m\right.$ means the logarithm to the base q.) Further information in this area can be found in the beautiful thesis of Flajolet [2].

In the rest of this paper the summing function of $S_{2,2^{-5}}(n)$ is treated, but I hope to do further work in this direction in the future. The ordinary sum of digits appears as the limit for $s \rightarrow \infty$.

From Theorem 1, we know that

$$
G_{2,2^{-s}}(n)=n-B_{2}(1, n)+B_{2}\left(1^{s}, n\right) .
$$

Plugging this into the definition of $S_{q, \alpha}$, we find that

$$
\begin{align*}
S_{2,2^{-s}}(n) & =B_{2}(1, n)-B_{2}\left(1^{s}, n\right) \\
& =S_{2}(n)-B_{2}\left(1^{s}, n\right) . \tag{4}
\end{align*}
$$

So $S_{2,2^{-s}}(n)$ is just the number of ones in the binary expansion of n minus the number of blocks of s consecutive ones in that expansion.

The rest of this paper is an analysis of the summing function of the function $B_{2}\left(1^{s}, n\right)$; then by (4), an analogue to Delange's result of $S_{2,2^{-s}}(n)$ can be formulated as a corollary.

Theorem 6. Let $B_{2}\left(1^{s}, n\right)$ denote the number of subblocks of s consecutive ones appearing in the binary representation of n, where overlapping is allowed. Then the summation of $B_{2}\left(1^{s}, n\right)$ is given by the formula

$$
\frac{1}{m} \sum_{n=0}^{m-1} B_{2}\left(1^{s}, n\right)=\frac{\log _{2} m-(s-1)}{2^{s}}+H_{s}\left(\log _{2} m\right)+\frac{E}{m}
$$

where H_{s} is continuous, periodic with period 1 , and satisfies $H_{s}(0)=0$, and where E is bounded by $0 \leqq E<1$.

Proof. A crucial point in Delange's derivation is the property

$$
\begin{equation*}
\left\lfloor\frac{t}{q^{r}}\right\rfloor=\left\lfloor\frac{n}{q^{r}}\right\rfloor \text { for } n \leqq t<n+1 \text {. } \tag{5}
\end{equation*}
$$

For $\alpha \neq 0$ it is not trivial to find an appropriate analogue.
An analogue to property (5) can be written as follows:

$$
\begin{equation*}
\left\lfloor\frac{t}{2^{\prime}}+\frac{1}{2^{s}}\right\rfloor=\left\lfloor\frac{n}{2^{\prime}}+\frac{1}{2^{s}}\right\rfloor \tag{6}
\end{equation*}
$$

holds for $n \leqq t<n+1$ and $r \geqq s$ and also for $n-\left(1 / 2^{s-r}\right) \leqq t<n+1-\left(1 / 2^{s-r}\right)$ and $r<s$.
Let $l=\log _{2} m$. We have

$$
\begin{aligned}
\sum_{n=0}^{m-1} B_{2}\left(1^{s}, n\right) & =\sum_{n=0}^{m-1} G_{2.2^{-s}}(n)-\sum_{n=0}^{m-1} G_{2,0}(n) \\
& =\sum_{r=1}^{s-1} \int_{2^{r-s}}^{m-2^{r-s}}\left\lfloor\frac{t}{2^{r}}+\frac{1}{2^{s}}\right\rfloor d t+\sum_{r=s}^{[l]+1} \int_{0}^{m}\left\lfloor\frac{t}{2^{r}}+\frac{1}{2^{s}}\right\rfloor d t-\sum_{r=0}^{[\mid]} \int_{0}^{m}\left\lfloor\frac{t}{2^{r+1}}\right\rfloor d t \\
& =-\sum_{r=1}^{s-1} 2^{r-s}\left\lfloor\frac{m}{2^{r}}+\frac{1}{2^{s}}\right\rfloor+\sum_{r=0}^{[l]} \int_{0}^{m}\left(\left\lfloor\frac{t}{2^{r+1}}+\frac{1}{2^{s}}\right\rfloor-\left\lfloor\frac{t}{2^{r+1}}\right\rfloor\right) d t .
\end{aligned}
$$

Now define

$$
\begin{gathered}
C=\sum_{r=1}^{s-1} 2^{r-s}\left\lfloor\frac{m}{2^{r}}+\frac{1}{2^{s}}\right\rfloor, \\
g_{s}(x)=\int_{0}^{x}\left(\left\lfloor t+\frac{1}{2^{s}}\right\rfloor-\lfloor t\rfloor-\frac{1}{2^{s}}\right) d t .
\end{gathered}
$$

$g_{s}(x)$ is periodic with period 1 , continuous and $g_{s}(0)=0$. With this notation we can write

$$
\begin{aligned}
\sum_{n=0}^{m-1} B_{2}\left(1^{s}, n\right) & =\sum_{r=0}^{l!} \int_{0}^{m}\left(\left\lfloor\frac{t}{2^{r+1}}+\frac{1}{2^{s}}\right\rfloor-\left\lfloor\frac{t}{2^{r+1}}\right\rfloor-\frac{1}{2^{s}}\right) d t+(\lfloor l\rfloor+1) \frac{m}{2^{s}}-C \\
& =\sum_{r=0}^{M 1} 2^{r+1} g_{s}\left(\frac{m}{2^{r+1}}\right)+(\lfloor l\rfloor+1) \frac{m}{2^{s}}-C \\
& =\sum_{r=-\infty}^{l!\rfloor} 2^{r+1} g_{s}\left(\frac{m}{2^{r+1}}\right)+(\lfloor l\rfloor+1) \frac{m}{2^{s}}-C \\
& =\sum_{k=0}^{\infty} 2^{1+\lfloor l\rfloor-k} g_{s}\left(m 2^{k-[l!-1}\right)+(\lfloor l\rfloor+1) \frac{m}{2^{s}}-C .
\end{aligned}
$$

Now remember that $m=2^{l}$ and define $\{l\}=l-[l]$ and

$$
h_{s}(x)=\sum_{k \geq 0} 2^{-k} g_{s}\left(x 2^{k}\right)
$$

Then

$$
\sum_{n=0}^{m-1} B_{2}\left(1^{s}, n\right)=m 2^{1-(l)} \cdot h_{s}\left(2^{[l\}-1}\right)+(\lfloor l\rfloor+1) \frac{m}{2^{s}}-C .
$$

Now defining

$$
H_{s}(l)=2^{1-\{l \mid} h_{s}\left(2^{(l\}-1}\right)-\frac{1}{2^{s}}(\{l\}-1),
$$

it remains only to analyze the quantity C to complete the proof.

$$
C=\sum_{r=1}^{s-1} 2^{r-s}\left\lfloor\frac{m}{2^{r}}+\frac{1}{2^{s}}\right\rfloor=\sum_{r=1}^{s-1} 2^{r-s}\left\lfloor\frac{m}{2^{r}}\right\rfloor,
$$

since r lies in the range $1 \leqq r \leqq s-1$. Thus

$$
C=\sum_{r=1}^{s-1} 2^{r-s}\left(\frac{m}{2^{r}}\right)-\sum_{r=1}^{s-1} 2^{r-s}\left\{\frac{m}{2^{r}}\right\}=m \frac{s-1}{2^{s}}-E .
$$

Since $\{x\}$ lies always in the interval $[0,1)$, we can deduce that the remaining error term E must also lie in that interval.

Using Delange's result on the summing function of $S_{2}(n)$ from [1] we get immediately:

Corollary 7. If $S_{q, \alpha}(n)$ denotes the generalized "sum of digits" function defined above, then the summing function of the quantity $S_{2,2^{-s}}(n)$ is given by

$$
\frac{1}{m} \sum_{n=0}^{m-1} S_{2,2^{-s}}(n)=\left(\frac{1}{2}-\frac{1}{2^{s}}\right) \log _{2} m+\frac{s-1}{2^{s}}+F\left(\log _{2} m\right)-H_{s}\left(\log _{2} m\right)-\frac{E}{m}
$$

where both F and H_{s} are continuous, periodic with period 1, and take the value 0 on the integers, and where E is bounded by $0 \leqq E<1$.
3. The Fourier series for $\boldsymbol{H}_{\mathbf{s}}(\boldsymbol{x})$. Delange [1] has already determined the Fourier series for $F(x)$. Similar methods apply to $H_{s}(x)$.

Theorem 8. The Fourier expansion $H_{s}(x)=\sum_{k} h_{k} e^{2 k \pi i x}$ of the function $H_{s}(x)$ converges absolutely, and its coefficients are given by

$$
\begin{aligned}
& h_{0}=\log _{2} \Gamma\left(1-\frac{1}{2^{s}}\right)-\frac{1}{2^{s} \log 2}-\frac{1}{2^{s+1}}, \\
& h_{k}=\frac{\zeta\left(\frac{2 k \pi i}{\log 2}, 1-\frac{1}{2^{s}}\right)-\zeta\left(\frac{2 k \pi i}{\log 2}\right)}{2 k \pi i\left(1+\frac{2 k \pi i}{\log 2}\right)} \text { for } k \neq 0
\end{aligned}
$$

Proof. Let $0 \leqq x<1$. Since

$$
H_{s}(x)=2^{1-x} h_{s}\left(2^{x-1}\right)+\frac{1-x}{2^{s}}
$$

the determination of the Fourier coefficients decomposes as:

$$
h_{k}=\int_{0}^{1} 2^{1-x} h_{s}\left(2^{x-1}\right) e^{-2 k \pi i x} d x+\frac{1}{2^{s}} \int_{0}^{1}(1-x) e^{-2 k \pi i x} d x=a_{k}+b_{k} .
$$

It is easily seen that

$$
\begin{aligned}
& b_{k}=\frac{1}{2^{s}} \cdot \frac{1}{2 k \pi i} \text { for } k \neq 0, \quad b_{0}=\frac{1}{2^{s}} \cdot \frac{1}{2} \\
& a_{k}=\int_{0}^{1} 2^{1-x} \sum_{r=0}^{\infty} 2^{-r} g_{s}\left(2^{r+x-1}\right) e^{-2 k \pi i x} d x
\end{aligned}
$$

and as in [1], the integration and the summation can be interchanged:

$$
a_{k}=\sum_{r=0}^{\infty} \int_{0}^{1} 2^{1-r-x} g_{s}\left(2^{r+x-1}\right) e^{-2 k \pi i x} d x
$$

The change of variable $x=1-r+\log _{2} u$ gives

$$
\int_{0}^{1} 2^{1-r-x} g_{s}\left(2^{r+x-1}\right) e^{-2 k \pi i x} d x=\frac{1}{\log 2} \int_{2^{r-1}}^{2 \cdot} \frac{g_{s}(u)}{u^{2}} \exp \left(-2 k \pi i \cdot \log _{2} u\right) d u
$$

Thus

$$
a_{k}=\frac{1}{\log 2} \int_{1 / 2}^{\infty} \frac{g_{s}(u)}{u^{2+2 k \pi i / \log 2}} d u .
$$

As in [1], the integral

$$
\Phi_{s}(z)=\int_{1 / 2}^{\infty} \frac{g_{s}(u)}{u^{z+1}} d u
$$

should be studied; then

$$
a_{k}=\frac{1}{\log 2} \Phi_{s}\left(1+\frac{2 k \pi t}{\log 2}\right) .
$$

Since

$$
g_{s}(u)=\int_{0}^{u}\left(\left\lfloor t+\frac{1}{2^{s}}\right\rfloor-\lfloor t\rfloor-\frac{1}{2^{s}}\right) d t,
$$

by partial integration for $\operatorname{Re} z>0$,

$$
\Phi_{s}(z)=-\frac{1}{2^{s}} \cdot \frac{2^{z-1}}{z}+\frac{1}{z} \int_{1 / 2}^{\infty}\left(\left\lfloor u+\frac{1}{2^{s}}\right\rfloor-\lfloor u\rfloor-\frac{1}{2^{s}}\right) \frac{d u}{u^{z}} .
$$

For $\operatorname{Re} z>2$, the integral can be split into three parts. The third one is

$$
-\frac{1}{2^{s}} \cdot \frac{1}{z} \int_{1 / 2}^{\infty} \frac{d u}{u^{z}}=-\frac{1}{2^{s}} \cdot \frac{1}{z} \cdot \frac{2^{z-1}}{z-1} .
$$

The second one is

$$
-\frac{1}{z} \int_{1 / 2}^{\infty}\lfloor u\rfloor \frac{d u}{u^{2}}=-\frac{1}{z} \cdot \frac{1}{z-1} \cdot \zeta(z-1) .
$$

The first one is

$$
\frac{1}{z} \int_{1 / 2}^{\infty}\left\lfloor u+\frac{1}{2^{s}}\right\rfloor \frac{d u}{u^{z}}=\frac{1}{z} \int_{1-2^{-s}}^{\infty}\left\lfloor u+\frac{1}{2^{s}}\right\rfloor \frac{d u}{u^{z}}=\frac{1}{z(z-1)} \zeta\left(z-1,1-\frac{1}{2^{s}}\right),
$$

where $\zeta(z-1, a)$ is the z-function of Hurwitz (see [3]). This gives

$$
\Phi_{s}(z)=-\frac{1}{2^{s}} \cdot \frac{2^{z-1}}{z-1}+\frac{\zeta\left(z-1,1-\frac{1}{2^{s}}\right)-\zeta(z-1)}{z(z-1)} .
$$

This holds for $\operatorname{Re} z>0$ by analytical continuation. This gives

$$
a_{k}=-\frac{1}{2^{s}} \cdot \frac{1}{2 k \pi i}+\frac{1}{2 k \pi i}\left(1+\frac{2 k \pi i}{\log 2}\right)^{-1}\left(\zeta\left(\frac{2 k \pi i}{\log 2}, 1-\frac{1}{2^{s}}\right)-\zeta\left(\frac{2 k \pi i}{\log 2}\right)\right)
$$

for $k \neq 0$. Now a_{0} must be computed. From [7],

$$
\zeta(z-1, a)=\frac{1}{2}-a+(z-1)\left(\log \Gamma(a)-\frac{1}{2} \log (2 \pi)\right)+O\left((z-1)^{2}\right) \quad \text { for } z \rightarrow 1
$$

Thus

$$
\begin{gathered}
\zeta\left(z-1,1-\frac{1}{2^{s}}\right)=-\frac{1}{2}+\frac{1}{2^{s}}+(z-1)\left(\log \Gamma\left(1-\frac{1}{2^{s}}\right)-\frac{1}{2} \log (2 \pi)\right)+O\left((z-1)^{2}\right), \\
\zeta(z-1)=\zeta(z-1,1)=-\frac{1}{2}-(z-1)^{\frac{1}{2} \log (2 \pi)+O\left((z-1)^{2}\right),} \\
2^{z-1}=1+(\log 2)(z-1)+O\left((z-1)^{2}\right), \\
\frac{1}{z}=1-(z-1)+O\left((z-1)^{2}\right) .
\end{gathered}
$$

This yields after some manipulations

$$
\Phi_{s}(z)=-\frac{1}{2^{s}}(1+\log 2)+\log \Gamma\left(1-\frac{1}{2^{s}}\right)+O\left((z-1)^{2}\right) \quad \text { for } z \rightarrow 1 .
$$

Hence

$$
a_{0}=-\frac{1}{2^{s} \log 2}-\frac{1}{2^{s}}+\log _{2} \Gamma\left(1-\frac{1}{2^{s}}\right) .
$$

Finally, since $\zeta(i t, a)=O\left(|t|^{1 / 2} \log |t|\right)$ [7], the Fourier series of H_{s} will converge absolutely.

Acknowledgment. The author would like to express his deep gratitude to an anonymous referee who went very carefully through the manuscript; he pointed out several errors and made numerous suggestions which increase both the readability and the contents of this paper.

REFERENCES

[1] H. Delange, Sur la fonction sommatoire de la fonction somme des chiffres, l'Enseignement Mathématique, 21 (1975), pp. 31-47.
[2] P. Flajolet, Analyse d'algorithmes de manipulation d'arbres et de fichiers, Thèse, Université ParisSud, 1979.
[3] P. Flajolet and L. Ramshaw, A note on Gray code and odd-even merge, SIAM J. Comput. 9 (1980), pp. 142-158.
[4] D. E. Knuth, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA, 1972.
[5] -, personal communication.
[6] H. Prodinger and F. J. Urbanek, Infinite 0-1-sequences without long adjacent identical blocks, Disc. Math., 28 (1979), pp. 277-289.
[7] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927.

[^0]: * Received by the editors May 29, 1980, and in revised form June 1, 1981.
 \dagger Institut für Algebra und Diskrete Mathematik, Technische Universität Wien, Guszhausstrasze 27-29, A-1040 Vienna, Austria.

