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ABSTRACT. We study a parameter that contains approximate counting, i.e.,

the level reached after n random increments, driven by geometric probabilities,

and insertion costs for tries as special cases. We are able to compute all moments

of this parameter in a semi-automatic fashion. This is another showcase of the

machinery developed in an earlier paper of these authors. Roughly speaking, it

works when the underlying distributions are distributed according to the Gumbel

distribution, or something similar.
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1. Introduction

Assume that n persons want to advance on a staircase. The rules are as
follows: The party starts at level 1. The m persons who advanced to level k flip
a coin. Those who flip ‘1’ (with probability q) advance to the next level; the
others, who flipped ‘0’ (with probability p = 1 − q) die. Additionally, there is
a demon, who kills one of the survivors with probability ν, but lets them alone
with probability µ = 1 − ν. The demon interferes only at a level 2 or higher. If
one single person is advancing to level k and is eaten, we do not say that this
level was reached. Only people who survive the coin flipping and the demon
count!

2000 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 05A16, 68P05, 68R05.

Keywords: Gumbel distribution, approximate counting, demon, trie, search cost, moment.
H. Prodinger’s research was supported by the NRF grant 2053748 and by the Center of Ex-

perimental Mathematics of the University of Stellenbosch.

G. Louchard visited this center in June 2006 and thanks for its hospitality.



GUY LOUCHARD — HELMUT PRODINGER

As was worked out in [10], the instance µ = 0 corresponds to approximate
counting. Let us recall what it is, to keep this paper independent. There is a
counter (the state the process is in at the moment), starting at 1, and random
increments, they increase the counter from i to i+1 with probability qi, otherwise
it stays at i. One is interested in the value of the counter after n random
increments.

The other extremal case µ = 1 (no demon interfering) is related to a digital
data structure called tries ([5], [9]). Although in the previous paper [10], only
the symmetrical case p = q = 1

2 was considered, the arguments carry over. Let p
be the probability to go left (corresponding to bit 0) and q the probability to go
right (corresponding to bit 1) in a trie, we think about those who go right as the
survivors, who repeat the experiment. In this way, we always move to the right.
And we are searching for an element .11111 . . . (sufficiently many 1’s), which is
not present in the data structure, in other words we consider the unsuccessful
search cost, followed by an insertion (which is the cost of inserting this element),
provided that we have n random data in the trie. For the symmetric case, this
makes perhaps more sense, as we are just interested in the parameter unsuccessful
search cost, as we are no longer considering the path that always goes right, but
rather a random path.

Of course, these two special cases are not necessary to understand the paper,
but they serve as a motivation.

The idea of introducing a probability µ of escaping the demon is borrowed
from [11]; in this thesis U. S c h m i d studied the collision resolution schemes,
related to n transmitted data, using simple tree-algorithms (Capetanakis, Hayes,
Tsybakov, Mikhailov). Unlike earlier approaches, S c h m i d assumes that with
a positive probability µ, one of the colliding packages survives and is successfully
submitted; compare also [12], [13].

In the following we are interested in the random variable (RV) K(n): highest

level reached by (at least one member of) a party of n players. We are able to
compute all moments (asymptotically) in an almost automatic fashion. This
will be done with the techniques worked out in [7]. Note that the expectated
value for the symmetric case p = q = 1

2 was computed using Rice’s method
in [10].
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2. Notations

We list for convenience the notations used in this paper.

n := number of persons,
π(n, k) := P[K(n) = k], π(n, 0) = 0, π(0, 1) = 1,

Π(n, k) :=
k∑

i=1

π(n, i),

ν := probability that the demon kills a survivor, µ = 1 − ν,
q := probability of flipping ‘1’ and advancing, p = 1 − q,

Fn(u) :=
∞∑

k=1

π(n, k)uk, F0(u) = u,

the generating function (GF) where the coefficient of uk gives
the probability that the party made it exactly to level k,

G(z, u) :=
∞∑

n=0
Fn(u) zn

n! , G(0, u) = u,

D(z, u) := e−zG(z, u) =
∞∑

n=0

zn

n!Dn(u), D(0, u) = u,

this is a classical Poissonization trick,
L := ln 1/q,

log x := log1/q x,
α̃ := α/L, α ∈ C

χl := 2lπi/L, l ∈ Z,
{x} := fractional part of x.

Furthermore, we need a few concepts from q-analysis:

(x)n := (1 − x)(1 − xq) . . . (1 − xqn−1);

often, one writes (x; q)n to emphasize the parameter q, but that is not necessary
here. (x)∞ := lim

n→∞(x)n.

Euler’s two partition identities:
∞∏

i=0

(1 − tqi) =
∞∑

n=0

(−1)nq(
n
2)tn

(q)n
, (1)

∞∏
i=0

(1 − tqi)−1 =
∞∑

n=0

tn

(q)n
. (2)

They are special cases of Cauchy’s formula (q-binomial theorem)

(at)∞
(t)∞

=
∞∑

n=0

(a)nt
n

(q)n
,
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which we will use later. These concepts can be found in [1].
The following abbreviations will be useful:

Q1 := (q)∞,

Q2 := (µq)∞,

H1(α) := (eα)∞,

H2(α) := (µqeα)∞.

We use the (now standard) notation [zn]f(z) to extract the coefficient of zn in
the series expansion of f(z).

3. Recurrences

Among the n persons, assume that j survive, with probability
(
n
j

)
qjpn−j .

Among the j survivors, j − 1 stay alive if the demon kills one of them (with
probability ν) or j stay alive (with probability µ). If all of them die (with
probability pn), the highest level reached is 1.

Summing over all possible cases, we thus get the recursion

π(n, k) :=
n∑

j=1

(
n

j

)
qjpn−j [νπ(j − 1, k − 1) + µπ(j, k − 1)] + pn[[k = 1]].

The ordinary GF is given by

Fn(u) = u

n∑
j=1

(
n

j

)
qjpn−j [νFj−1(u) + µFj(u)] + upn, n ≥ 1, F0(u) = u.

The exponential GF is given by

G
(z
p
, u

)
= uµezG

(zq
p
, u

)
− u2µez + ν

∞∑
n=1

zn

n!
u

n∑
j=1

(
n

j

)(q
p

)j

Fj−1(u) + uez.

Now we differentiate w.r.t. z. (The prime notation refers to this.)
1
p
G′

(z
p
, u

)
= uµezG

(zq
p
, u

)
+
q

p
uµezG′

(zq
p
, u

)
− u2µez

+ ν
∞∑

n=1

zn−1

(n− 1)!
u

n∑
j=1

(
n

j

)( q
p

)j

Fj−1(u) + uez.

Now we poissonize; this translates into

1
p
D′

(z
p
, u

)
+
q

p
D

(z
p
, u

)
= u

[
µ
q

p
D′

(zq
p
, u

)
+
q

p
D

(zq
p
, u

)]
.
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As D(z, u) =
∞∑

n=0

zn

n!Dn(u), comparing coefficients, we find

Dn(u) = Dn−1(u)(uqn − q)/(1 − uµqn),

from which we get, upon iteration, the explicit form

Dn(u) = u(−1)nqn (u)n

(uµq)n
.

Since, relating D with G,

Fn(u) =
n∑

j=0

(
n

j

)
Dj(u),

we can continue:

Fn(u) = u

n∑
j=0

(
n

j

)
(−1)jqj (u)j

(uµq)j

= u

n∑
j=0

(
n

j

)
(−1)jqj (u)∞

(uµq)∞
(uµqj+1)∞

(uqj)∞

= u
(u)∞

(uµq)∞

n∑
j=0

(
n

j

)
(−1)jqj

∞∑
k=0

(uqj)k(µq)k

(q)k

= u
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k
(µq)k

n∑
j=0

(
n

j

)
(−1)jqj(k+1)

= u
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k
(µq)k

(
1 − qk+1

)n
.

Reading off the coefficient [ul]Fn(u), we get the following explicit result.

����������� 1� We have

π(n, l) =
∑

i+j+h=l−1

(µq)i

(q)i

(−1)jq(
j
2)

(q)j

(µq)h

(q)h
(1 − qh+1)n.

Note that the special case µ = 0, which restricts the summation to i = 0,
leads to

l−1∑
j=0

(−1)jq(
j
2)

(q)j(q)l−1−j
(1 − ql−j)n
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which is exactly F l a j o l e t ’s formula ([2, (46)]). We can even derive a formula
with only one summation, again by invoking the q-binomial theorem:

π(n, l) = [ul−1]
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k
(µq)k

(
1 − qk+1

)n

=
l−1∑
k=0

(µq)k

(q)k

(
1 − qk+1

)n[ul−1−k]
(u)∞

(uµq)∞

=
l−1∑
k=0

(µq)k

(q)k

(
1 − qk+1

)n (1/(µq))l−1−k

(q)l−1−k
(µq)l−1−k.

However, we will not use this form; one disadvantage is that for µ = 0, one must
consider a limit.

4. Asymptotics

Now we set η = l − logn and let n → ∞. This gives, in the range η = O(1),
the limiting distribution

π(n, l) ∼ f(η) =
Q2

Q1

∞∑
i=0

∞∑
j=0

(µq)i

(q)i

(−1)jq(
j
2)

(q)j
exp

(−e−Lη+L(i+j)
)
,

Π(n, l) ∼ H(η),

with
f(η) = H(η) −H(η − 1),

where we recognize the Gumbel distribution function exp(−e−x). To show that
the limiting moments are equivalent to the moments of the limiting distribu-
tion, we need a suitable rate of convergence (in particular for large and small
values of η). This is related to a uniform integrability condition (see L o è v e
[6, Section 11.4]). For the kind of limiting distribution we consider here, the
rate of convergence is analyzed in detail in [7] and [8], we will not repeat the
arguments. Asymptotically, the distribution will be a periodic function of the
fractional part of logn. The distribution Π(n, l) does not converge in the weak
sense, it does however converge in distribution along subsequences nm for which
the fractional part of lognm is constant.

We will use the following result from H i t c z e n k o and L o u c h a r d [4]
related to the dominant part of the moments (the ˜ sign is related to the
moments of the discrete RV Yn).
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��� 2� Let a (discrete) RV Yn be such that P(Yn − logn ≤ η) ∼ F (η), where
F (η) is the distribution function of a continuous RV Z with mean m1, second
moment m2. Assume that F (η) is either an extreme-value distribution function
or a convergent series of such and that we have a suitable rate of convergence.
Let

ϕ(α) = E(eαZ) = 1 +
∞∑

k=1

αk

k!
mk.

Let w (with or without subscripts) denote periodic functions of logn, with period
1 and with small (usually of order no more than 10−5) mean and amplitude.
Actually, these functions depend on the fractional part of logn: {logn}.

Then the mean of Yn is given by

E(Yn − logn) ∼
+∞∫

−∞
x[F (x) − F (x− 1)] dx+ w1

= m̃1 + w1, with m̃1 = m1 + 1
2 .

The neglected part is of order 1/nβ with 0 < β < 1.

For the reader’s convenience, we collect some information from [7] that we
use to compute moments:

The moments of Yn − logn are asymptotically given by m̃i + wi, where the
generating function of m̃i is given by

φ(α) :=

∞∫
−∞

eαηf(η) dη = 1 +
∞∑

i=1

αi

i!
m̃i = ϕ(α)

eα − 1
α

. (3)

This leads to

m̃1 = m1 +
1
2
,

m̃2 = m2 +m1 +
1
3
,

m̃3 = m3 +
3
2
m2 +m1 +

1
4
.

To analyze the periodic component wi to be added to the moments m̃i we
proceed as in L o u c h a r d and P r o d i n g e r [7]. For instance,

E(Yn − logn) ∼ E(1)(n) =
∞∑

j=1

[F (j − logn) − F (j − logn− 1)][j − log n]. (4)
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Set y = Q−x and G(y) = F (x). Equation (4) becomes

E(1)(n) :=
∞∑

j=1

[G(n/Qj) −G(n/Qj+1)][− log(n/Qj)],

the Mellin transform of which is (for a good reference on Mellin transforms, see
F l a j o l e t et al. [3] or S z p a n k o w s k i [14])

Qs

1 −Qs
Υ∗

1(s), (5)

and

Υ∗
1(s) =

∞∫
0

ys−1[G(y) −G(y/Q)][− log y] dy

=

∞∫
−∞

Q−sx[F (x) − F (x− 1)]xL dx.

Then
Υ∗

1(s) = L φ′(α)|α=−Ls . (6)

The fundamental strip of (5) is usually of the form s ∈ 〈−C1, 0〉, C1 > 0. Set
also

Υ∗
0(s) = Lφ(α)

∣∣
α=−Ls, Υ∗

0(0) = L.

We assume now that all poles of Qs

1−Qs Υ∗
1(s) are simple poles, which will be the

case here, and given by s = 0, s = χl, with χl := 2lπi/L, l ∈ Z \ {0}. Using

E(1)(n) =
1

2πi

C2+i∞∫
C2−i∞

Qs

1 −Qs
Υ∗

1(s)n
−s ds, −C1 < C2 < 0,

the asymptotic expression of E(1)(n) is obtained by moving the line of integration
to the right, for instance to the line 	s = C4 > 0, taking residues into account
(with a negative sign). This gives

E(1)(n) = − Res
[ Qs

1 −Qs
Υ∗

1(s)n
−s

]∣∣∣∣
s=0

−
∑
l�=0

Res
[ Qs

1 −Qs
Υ∗

1(s)n
−s

]∣∣∣∣
s=χl

+ O(n−C4).

The residue at s = 0 gives of course

m̃1 =
Υ∗

1(0)
L

= φ′(0).
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The other residues lead to

w1 =
1
L

∑
l�=0

Υ∗
1(χl)e−2lπi log n. (7)

More generally,
E(Yn − log n)k ∼ m̃k + wk,

with
wk =

1
L

∑
l�=0

Υ∗
k(χl)e−2lπi log n,

and
Υ∗

k(s) = L φ(k)(α)
∣∣∣
α=−Ls

.

It will appear that Υ∗
k(s) are analytic functions (in some domain), depending

on classical functions such as the Γ function. But we know that Γ(s) decreases
exponentially towards ±i∞:

|Γ(σ + it)| ∼
√

2π|t|σ−1/2e−π|t|/2, (8)

and all our functions will also decrease exponentially towards ±i∞.
Set

φ(α) =

∞∫
−∞

eαηf(η) dη

=
Q2

Q1

∞∑
i=0

∞∑
j=0

(µq)i

(q)i

(−1)jq(
j
2)

(q)j
eα(i+j)Γ(−α̃)/L

=
Q2

Q1

H1(α)
H2(α)

Γ(−α̃)/L.

This function will be the main tool we need to derive all asymptotic moments.

5. Moments
We have

E
[
(K(n) − logn)i

] ∼ m̃i + wi + O(n−βi), βi > 0,

where m̃i are constants and wi are periodic functions of log n, with small < 10−5

amplitude. All these expressions only depend on φ(α) and its derivatives. For
instance,

φ(0) = 1,

m̃1 = φ′(0),
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m̃2 = φ′′(0),

w1 =
∑
l�=0

ϕ1(χl)e−2lπi log n,

ϕ1(χl) = φ′(α)|α=−Lχl
,

w2 =
∑
l�=0

ϕ2(χl)e−2lπi log n,

ϕ2(χl) = φ′′(α)|α=−Lχl
.

Also note the following local expansions for α̃ close to 0 resp. −χl; recall that
α = α̃L:

Γ(−α̃) = −L
α
− γ − π2 + 6γ2

12L
α+ · · · ,

Γ(−α̃) = Γ(χl) − ψ(χl)Γ(χl)
L

(α+ Lχl)

+
Γ(χl)

(
ψ(1, χl) + ψ2(χl)

)
2L2

(α+ Lχl)2 + · · · .

With the identities presented in the appendix, this leads to our main result:


�
��
� 1� The moments of the random variable K(n) = highest level reached

by (at least one member of) a party of n players satisfy the following asymptotic
relation:

E
[
(K(n) − logn)i

] ∼ m̃i + wi + O(n−βi), βi > 0,

m̃1 =
2γ + L− 2LC1,1 + 2LµqC2,1

L
,

w1 =
∑
l�=0

ϕ1(χl)e−2lπi log n,

ϕ1(χl) = −Γ(χl)
L

,

m̃2 = [π2 + 6γ2 + 6γL− 12γLC1,1 + 12γLµqC2,1 + 2L2

− 12L2C1,1 − 6L2C1,2 + 6L2C2
1,1 + 12L2µqC2,1

+ 6L2µ2q2C2,2 + 6L2µ2q2C2
2,1 − 12L2µqC2,1C1,1]/(6L2),

w2 =
∑
l�=0

ϕ2(χl)e−2lπi log n,

272



ADVANCING IN THE PRESENCE OF A DEMON

ϕ2(χl) = − (−2ψ(χl) + L− 2LC1,1 + 2LµqC2,1)Γ(χl)
L2

.

The meaning of the various constants and functions can be found in the text and
the appendix.

The first two expressions are identical to P r o d i n g e r [10]. All moments
can be automatically obtained by the same method.

For the reader’s convenience, we explicitly write the expected value of the
maximum level that a party of (initially) n people reaches:

E(K(n)) ∼ log1/q(n) +
2γ
L

+ 1 − 2
∞∑

i=1

qi

1 − qi
+ 2

∞∑
i=1

µqi

1 − µqi
+ δ(log1/q(n))

with

δ(x) = − 1
L

∑
l∈Z\{0}

Γ(χl)e−2πilx.

6. Conclusion

This note is another showcase of the machinery developed in [7]. Once the
underlying distribution is Gumbel distributed (extreme value distribution), mo-
ments can be computed in a semi-automatic way.

We hope to extend this series of applications in the near future.

Acknowledgement� The insightful comments of the referee are gratefully ac-
knowledged.

Appendix A. Identities related to H1(α)

We find it useful to introduce the functions

Σ1,k(z) := (k − 1)!
∞∑

i=1

qki/(1 + zqi)k.

It is easily noticed that

Σ′
1,k(z) = −Σ1,k+1(z).
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The special values

C1,k :=
∞∑

i=1

qki/(1 − qi)k =
1

(k − 1)!
Σ1,k(−1)

are also of interest.
Logarithmic differentiation produces the following formulæ.

(−qz)′∞ = (−qz)∞Σ1,1,

(−qz)′′∞ = (−qz)∞[Σ2
1,1 − Σ1,2],

(−qz)′′′∞ = (−qz)∞[−3Σ1,1Σ1,2 + Σ3
1,1 + Σ1,3],

(−z)′∞ = (−qz)∞[1 + (1 + z)Σ1,1],

(−z)′′∞ = (−qz)∞
[
2Σ1,1 + (1 + z)[−Σ1,2 + Σ2

1,1]
]
,

(−z)′′′∞ = (−qz)∞
[−3Σ1,2 + 3Σ2

1,1 + (1 + z)[Σ1,3 − 3Σ1,2Σ1,1 + Σ3
1,1]

]
;

we wrote here Σ1,k for Σ1,k(z).
Let ∂α and ∂z be the operators that differentiate w.r.t. α resp. z. Then we

get by the chain rule for any K(z), with z = −eα or z = −µqeα:

∂αK = z∂zK,

∂2
αK = z[z∂2

zK + ∂zK],

∂3
αK = z[∂zK + 3z∂2

zK + z2∂3
zK].

This leads to (recall that H1(α) = (eα)∞)

H1,0 := H1(0) = 0,

H1,1 := ∂αH1(α)|α=0 = −Q1,

H1,2 := ∂2
αH1(α)|α=0 = Q1[−1 + 2C1,1],

H1,3 := ∂3
αH1(α)|α=0 = Q1[−1 + 6C1,1 + 3C1,2 − 3C2

1,1].

Note that we obtain the same expressions for α = −Lχl, as e−Lχl = 1.

Appendix B. Identities related to H2(α)

Now we deal with H2(α) = (µqeα)∞.
We need

Σ2,k(z) := (k − 1)!
∞∑

i=0

qki/(1 + zqi)k =
(k − 1)!
(1 + z)k

+ Σ1,k(z)
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and

C2,k =
∞∑

i=0

qki/(1 − µqqi)k =
1

(k − 1)!
Σ2,k(−µq).

Since

(−z)′∞ = (−z)∞Σ2,1(z),

(−z)′′∞ = (−z)∞[Σ2
2,1(z)− Σ2,2(z)],

we get

H2,0 := H2(0) = Q2,

H2,1 := ∂αH2(α)|α=0 = −µqC2,1Q2,

H2,2 := ∂2
αH2(α)|α=0 = −µqQ2[C2,1 − µq(−C2,2 + C2

2,1)].

Again we obtain the same expressions for α = −Lχl, as e−Lχl = 1.
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