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Abstract. We study a parameter that contains approximate counting, i.e., the
level reached after n random increments, driven by geometric probabilities, and
insertion costs for tries as special cases. We are able to compute all moments
of this parameter in a semi-automatic fashion. This is another showcase of the
machinery developed in an earlier paper of these authors. Roughly speaking, it
works when the underlying distributions are distributed according to the Gumbel
distribution, or something similar.

1. Introduction

Assume that n persons want to advance on a staircase. The rules are as follows:
The party starts at level 1. The m persons who advanced to level k flip a coin.
Those who flip ‘1’ (with probability q) advance to the next level; the others, who
flipped ‘0’ (with probability p = 1 − q) die. Additionally, there is a demon, who
kills one of the survivors with probability ν, but lets them alone with probability
µ = 1 − ν. The demon interfers only at a level 2 or higher. If one single person is
advancing to level k and is eaten, we don’t say that this level was reached. Only
people who survive the coin flipping and the demon count!

As was worked out in [8], the instance µ = 0 corresponds to approximate counting.
Let us recall what it is, to keep this paper independent. There is a counter (the
state the process is in at the moment), starting at 1, and random increments, the
increase the counter from i to i+ 1 with probability qi, otherwise it stays at i. One
is interested in the value of the counter after n random increments.

The other extremal case µ = 1 (no demon interfering) is related to a digital data
structure called tries [3, 7]. Although in the previous paper [8], only the symmetrical
case p = q = 1

2
was considered, the arguments carry over. Let p be the probability

to go left (corresponding to bit 0) and q the probability to go right (corresponding to
bit 1) in a trie, we think about those who go right as the survivors, who repeat the
experiment. In this way, we always move to the right. And we are searching for an
element .11111 . . . (sufficiently many 1’s), which is not present in the data structure,
in other words we consider the unsuccessful search cost, followed by an insertion
(which is the cost of inserting this element), provided that we have n random data
in the trie. For the symmetric case, this makes perhaps more sense, as we are just
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interested in the parameter unsuccessful search cost, as we are no longer considering
the path that always goes right, but rather a random path.

Of course, these two special cases are not necessary to understand the paper, but
they serve as a motivation.

The idea of introducing a probability µ of escaping the demon is borrowed from
[9]; in this thesis U. Schmid studied the collision resolution schemes, related to
n transmitted data, using simple tree-algorithms (Capetanakis, Hayes, Tsybakov,
Mikhailov). Unlike earlier approaches, Schmid assumes that with a positive proba-
bility µ, one of the colliding packages survives and is successfully submitted; compare
also [10, 11].

In the following we are interested in the random variable K: highest level reached
by a party of n players. We are able to compute all moments (asymptotically) in an
almost automatic fashion. This will be done with the techniques worked out in [5].
Note that the expectated value for the symmetric case p = q = 1

2
was computed

using Rice’s method in [8].

2. Notations

We list for convenience the notations used in this paper.

n := number of persons,

π(n, k) := P[n persons reach level k, but no higher level], π(n, 0) = 0, π(0, 1) = 1,

ν := Probability that the demon kills a survivor, µ = 1− ν,

q := Probability of flipping ‘1’ and advancing, p = 1− q,

Fn(u) :=
∞∑

k=1

π(n, k)uk, F0(u) = u,

the generating polynomial where the coefficient of uk gives the probability that the
party made it exactly to level k,

G(z, u) :=
∞∑

n=0

Fn(u)
zn

n!
, G(0, u) = u,

D(z, u) := e−zG(z, u) =
∞∑

n=0

zn

n!
Dn(u), D(0, u) = u,

L := ln 1/q,

log x = log1/q x,

α̃ := α/L,

χl := 2lπi/L, l ∈ Z,
{x} := fractional part of x.
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Furthermore, we need a few concepts from q-analysis:

(x)n := (1− x)(1− xq) . . . (1− xqn−1);

often, one writes (x; q)n to emphasize the parameter q, but that is not necessary
here. (x)∞ := limn→∞(x)n.

Euler’s two partition identities:

∞∏
l=0

(1− uql) =
∞∑

t=0

(−1)tutq(
t
2)

(q)t

, (1)

∞∏
i=1

(1− tqi−1)−1 =
∞∑

u=0

1

(q)u

tu. (2)

They are special cases of Cauchy’s formula (q-binomial theorem)

(at)∞
(t)∞

=
∞∑

t=0

(a)nt
n

(q)n

,

which we will use later. These concepts can be found in [1].

The following abbreviations will be useful:

Q1 := (q)∞,

Q2 := (µq)∞,

H1(α) := (eα)∞,

H2(α) := (µqeα)∞.

We use the (now standard) notation [zn]f(z) to extract the coefficient of zn in the
series expansion of f(z).

3. Recurrences

We have

π(n, k) :=
n∑

j=1

(
n

j

)
qjpn−j[νπ(j − 1, k − 1) + µπ(j, k − 1)] + pn[[k = 1]],

Fn(u) = u
n∑

j=1

(
n

j

)
qjpn−j[νFj−1(u) + µFj(u)] + upn, n ≥ 1, F0(u) = u.

G
(z
p
, u

)
= uµezG

(zq
p
, u

)
− u2µez + νµez + ν

∞∑
n=1

zn

n!
u

n∑
j=1

(
n

j

)(q
p

)j

Fj−1(u) + uez.

Now we differentiate w.r.t. z. (The prime notation refers to this.)

1

p
G′

(z
p
, u

)
= uµezG

(zq
p
, u

)
+
q

p
uµezG′

(zq
p
, u

)
− u2µez

+ ν

∞∑
n=1

zn−1

(n− 1)!
u

n∑
j=1

(
n

j

)(q
p

)j

Fj−1(u) + uez.



4 G. LOUCHARD AND H. PRODINGER

This translates into

1

p
D′

(z
p
, u

)
+
q

p
D

(z
p
, u

)
= u

[
µ
q

p
D′

(zq
p
, u

)
+
q

p
D

(zq
p
, u

)]
,

or
D′(z, u) + qD(z, u) = uµqD′(zq, u) + uqD(zq, u).

Comparing coefficients, we find

Dn(u) = Dn−1(u)(uq
n − q)/(1− uµqn),

from which we get, upon iteration, the explicit form

Dn(u) = u(−1)nqn (u)n

(uµq)n

.

Since

Fn(u) =
n∑

j=0

(
n

j

)
Dj(u),

we can continue:

Fn(u) = u
n∑

j=0

(
n

j

)
(−1)jqj (u)j

(uµq)j

= u
n∑

j=0

(
n

j

)
(−1)jqj (u)∞

(uµq)∞

(uµqj+1)∞
(uqj)∞

= u
(u)∞

(uµq)∞

n∑
j=0

(
n

j

)
(−1)jqj

∞∑
k=0

(uqj)k(µq)k

(q)k

= u
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k

(µq)k

n∑
j=0

(
n

j

)
(−1)jqj(k+1)

= u
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k

(µq)k

(
1− qk+1

)n
.

Reading off the coefficient [ul]Fn(u), we get the following explicit result.

Proposition 1.

π(n, l) =
∑

i+j+h=l−1

(µq)i

(q)i

(−1)jq(
j
2)

(q)j

(µq)h

(q)h

(1− qh+1)n.

Note that the special case µ = 0, which restricts the summation to i = 0, leads to

l−1∑
j=0

(−1)jq(
j
2)

(q)j(q)l−1−j

(1− ql−j)n

which is exactly Flajolet’s formula [2, (46)]. We can even derive a formula with only
one summation, again by invoking the q-binomial theorem:

π(n, l) = [ul−1]
(u)∞

(uµq)∞

∞∑
k=0

uk

(q)k

(µq)k

(
1− qk+1

)n



ADVANCING IN THE PRESENCE OF A DEMON 5

=
l−1∑
k=0

(µq)k

(q)k

(
1− qk+1

)n
[ul−1−k]

(u)∞
(uµq)∞

=
l−1∑
k=0

(µq)k

(q)k

(
1− qk+1

)n (1/(µq))l−1−k

(q)l−1−k

(µq)l−1−k.

However, we will not use this form; one disadvantage is that for µ = 0, one must
consider a limit.

4. Asymptotics

Now we set η = l − log n and let n→∞. This gives, in the range η = O(1), the
limiting distribution

π(n, l) ∼ f(η) =
Q2

Q1

∞∑
i=0

∞∑
j=0

(µq)i

(q)i

(−1)jq(
j
2)

(q)j

exp(−e−Lη+L(i+j)),

where we recognize the Gumbel distribution function exp(−e−x). To show that the
limiting moments are equivalent to the moments of the limiting distribution, we need
a suitable rate of convergence (in particular for large and small values of η). This
is related to a uniform integrability condition (see Loève [4, Section 11.4]). For the
kind of limiting distribution we consider here, the rate of convergence is analyzed in
detail in [5] and [6], we will not repeat the arguments. Set

φ(α) =

∫ ∞

−∞
eαηf(η)dη

=
Q2

Q1

∞∑
i=0

∞∑
j=0

(µq)i

(q)i

(−1)jq(
j
2)

(q)j

eα(i+j)Γ(−α̃)/L =
Q2

Q1

H1(α)

H2(α)
Γ(−α̃)/L.

This function will be the main tool we need to derive all asymptotic moments.

5. Moments

We have, with the notations of Louchard and Prodinger [5],

E
[
(K − log n)i

]
∼ m̃i + wi +O(n−β), β > 0,

where m̃i are constants and wi are periodic functions of log n, with small < 10−5

amplitude. All these expressions only depend on φ(α) and its derivatives. For
instance,

φ(0) = 1,

m̃1 = φ′(0),

m̃2 = φ′′(0),

w1 =
∑
l 6=0

ϕ1(χl)e
−2lπi log n,

ϕ1(χl) = φ′(α)|α=−Lχl
,
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w2 =
∑
l 6=0

ϕ2(χl)e
−2lπi log n,

ϕ2(χl) = φ′′(α)|α=−Lχl
,

Also note the following local expansions for α̃ close to 0 resp. −χl; recall that
α = α̃L:

Γ(−α̃) = −L
α
− γ − π2 + 6γ2

12L
α+ · · · ,

Γ(−α̃) = Γ(χl)−
ψ(χl)Γ(χl)

L
(α+ Lχl) +

Γ(χl)
(
ψ(1, χl) + ψ2(χl)

)
2L2

(α+ Lχl)
2 + · · ·

With the appendix identities, this leads to

Theorem 1.

m̃1 =
2γ + L− 2LC1,1 + 2LµqC2,1

L
,

ϕ1(χl) = −Γ(χl)

L
,

m̃2 = [π2 + 6γ2 + 6γL− 12γLC1,1 + 12γLµqC2,1 + 2L2 − 12L2C1,1 − 6L2C1,2

+ 6L2C2
1,1 + 12L2µqC2,1 + 6L2µ2q2C2,2 + 6L2µ2q2C2

2,1 − 12L2µqC2,1C1,1]/(6L
2),

ϕ2(χl) = −(−2ψ(χl) + L− 2LC1,1 + 2LµqC2,1)Γ(χl)

L2
.

The first two expressions are identical to Prodinger[8]. All moments can be auto-
matically obtained by the same method.

For the reader’s convenience, we explicitly write the expected value of the maxi-
mum level that a party of n people reaches:

E(K) ∼ log1/q(n) +
2γ

L
+ 1− 2

∞∑
i=1

qi

1− qi
+ 2

∞∑
i=1

µqi

1− µqi
+ δ(log1/q(n))

with

δ(x) = − 1

L

∑
l∈Z\{0}

Γ(χl)e
−2πilx.

6. Conclusion

This note is another showcase of the machinery developed in [5]. Once the un-
derlying distribution is Gumbel distributed (extreme value distribution), moments
can be computed in a semi-automatic way.

We hope to extend this series of applications in the near future.
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Appendices.

Appendix A. Identities related to H1(α)

We find it useful to introduce the functions

Σ1,k(z) := (k − 1)!
∞∑
i=1

qki/(1 + zqi)k.

It is easily noticed that

Σ′
1,k(z) = −Σ1,k+1(z).

The special values

C1,k :=
∞∑
i=1

qki/(1− qi)k =
1

(k − 1)!
Σ1,k(−1)

are also of interest.

Logarithmic differentiation produces the following formulæ.

(−qz)′∞ = (−qz)∞Σ1,1,

(−qz)′′∞ = (−qz)∞[Σ2
1,1 − Σ1,2],

(−qz)′′′∞ = (−qz)∞[−3Σ1,1Σ1,2 + Σ3
1,1 + Σ1,3],

(−z)′∞ = (−qz)∞[1 + (1 + z)Σ1,1],

(−z)′′∞ = (−qz)∞[2Σ1,1 + (1 + z)[−Σ1,2 + Σ2
1,1]],

(−z)′′′∞ = (−qz)∞[−3Σ1,2 + 3Σ2
1,1 + (1 + z)[Σ1,3 − 3Σ1,2Σ1,1 + Σ3

1,1]];

we wrote here Σ1,k for Σ1,k(z).

Let ∂α and ∂z be the operator that differentiate w.r.t. α resp. z. Then we get by
the chain rule for any K(z), with z = −eα or z = −µqeα:

∂αK = z∂zK,

∂2
αK = z[z∂2

zK + ∂zK],

∂3
αK = z[∂zK + 3z∂2

zK + z2∂3
zK].

This leads to (recall that H1(α) = (eα)∞)

H1,0 := H1(0) = 0,

H1,1 := ∂αH1(α)|α=0 = −Q1,

H1,2 := ∂2
αH1(α)|α=0 = Q1[−1 + 2C1,1],

H1,3 := ∂3
αH1(α)|α=0 = Q1[−1 + 6C1,1 + 3C1,2 − 3C2

1,1];

Note that we obtain the same expressions for α = −Lχl, as e−Lχl = 1.
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Appendix B. Identities related to H2(α)

Now we deal with H2(α) = (µqeα)∞.

We need

Σ2,k(z) := (k − 1)!
∞∑
i=0

qki/(1 + zqi)k =
(k − 1)!

(1 + z)k
+ Σ1,k(z)

and

C2,k =
∞∑
i=0

qki/(1− µqqi)k =
1

(k − 1)!
Σ2,k(−µq).

Since

(−z)′∞ = (−z)∞Σ2,1(z),

(−z)′′∞ = (−z)∞[Σ2
2,1(z)− Σ2,2(z)],

we get

H2,0 := H2(0) = Q2,

H2,1 := ∂αH2(α)|α=0 = −µqC2,1Q2,

H2,2 := ∂2
αH2(α)|α=0 = −µqQ2[C2,1 − µq(−C2,2 + C2

2,1)],

Again we obtain the same expressions for α = −Lχl, as e−Lχl = 1.
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