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Abstract Words a1a2 . . . an with independent letters ak taken from the set of natural num-
bers, and a weight (probability) attached via the geometric distribution pqi−1 (p + q = 1)
are considered. The parameter K(a1a2 . . . an), (the number of weak consecutive records),
has proved to be essential in the analysis of a skip list structure. Related to it is the (new)
parameter M, i.e., the largest consecutive record in a random word of length n. Exact and
asymptotic formulæ are derived for the expectation and the variance.

Keywords Alternating sum · Heine’s transformation · q-series · Asymptotics ·
Rice’s method
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1 Introduction

We consider words a1a2 . . . an with letters ak taken from the set of natural numbers, and a
weight (probability) attached to it by saying that the letter i ∈ N occurs with probability
pqi−1 (p +q = 1) and that the letters are independent. The parameter K(a1a2 . . . an), which
we call the number of weak consecutive records, has proved to be essential in the analysis of
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164 K. Oliver, H. Prodinger

a skip list structure [10]. The word is scanned from left to right, and assuming that the current
record (maximum) is value k, any letter different from k, k + 1 is ignored. If, however, the
symbol scanned is one of these, we call it a weak consecutive record, and set the value of the
current maximum to it. So, the current record either stays at k or advances to the next value
k + 1. The skip list version assumes that the first letter of the word defines the first record.

For the sake of clarity, we consider the word 1 3 1 1 2 4 3 5 3 5 1 4 1 2 3 4 6 5 1 and under-
line each consecutive maximum: 1 3 1 1 2 4 3 5 3 5 1 4 2 1 3 4 6 5 1. The number of underlined
symbols (9 in this case) is the parameter K of interest.

In [10], the average of the parameter K(n) was shown to be (with Q = 1/q)

EK(n) = 1 + (Q + 1)

n∑

j=1

(
n

j

)
(−1) j−1(q) j−1 p j+1q j

1 − q j+1 ,

which was also evaluated asymptotically.

Theorem 1 (Old theorem) The expectation of the K(n)-parameter is asymptotic to

EK(n) ∼ (Q + 1) logQ n + (Q + 1)γ

L
+ Q + 1

L
log(p)− (Q + 1)α − (1 + q)2

2pq
+ 1 + δ(logQ n).

The constant α is given by

α =
∑

i≥1

qi

1 − qi
;

δ(x) is a small periodic function. Its Fourier coefficients could be given in principle.

In this paper we investigate the parameter M, which is the maximum of the underlined
values. Now, clearly, for that, we do not need to underline repetitions of the current maximum,
as in the instance of the K-parameter. So, when our current maximum is k − 1, we ignore
all letters different from k, and when it occurs (with probability pqk−1) we set the current
maximum to k. We will find explicit and asymptotic expressions for average and variance,
assuming random words of length n.

This parameter is related to other ones that appear in the literature:

• If the current maximum is updated (to new value j) whenever a larger element j (than
the current k) occurs (with probability pq j−1), then the resulting parameter is simply the
maximum of the word, and this parameter is well understood [8,16].

• If the local counter is updated from k to k + 1 with probability qk , and the process starts
with a counter value 1 before any letter is read, then this is called approximate counting,
and it is also very well understood [3,5,7,11–13].

This contribution belongs to the area called combinatorics of geometrically distributed
words which was started with [14]; this area attracted also other people’s attention, notably
the team lead by A. Knopfmacher in Johannesburg contributed to it, see e.g. [2].

We use (standard) notation from q-analysis: (x)n = (x; q)n = ∏n−1
i=0 (1 − xqi ) and

(x)∞ = ∏
i≥0(1 − xqi ). Note that (x)n = (x)∞/(xqn)∞, and the latter form makes sense

also for n a complex number.

Furthermore, we use Q = 1/q and L = log Q.
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Consecutive records in geometrically distributed words 165

2 Analysis of the M-parameter

Let bk(z) be the generating function, such that the coefficient of zn is the probability that a
random word of length n has parameter M equal to k. We derive a recursion:

bk(z) = bk−1(z)
zpqk−1

1 − z[1 − pqk] + zpqk−1

1 − z[1 − pqk] .

It holds for k ≥ 1, when we assume that b0 = 0. It is easy to understand: A new consecutive
record k is attached to an existing word, followed by letters different from k + 1; thus, all
these letters are no consecutive records. The second term of the right-hand side corresponds
to the situation that there was no previous record, i.e., the word starts with letter k.

We simplify:

bk(z)[1 − z(1 − pqk)] = bk−1(z)zpqk−1 + zpqk−1.

With the useful substitution z = w/(w − 1) (“Euler transform” [6]), this reads as

bk(1 − wpqk) = −bk−1wpqk−1 − wpqk−1,

where we write bk := bk(z) for convenience, or

bk(wpq; q)k(−1)k

wk pkq(k
2)

= bk−1(wpq; q)k−1(−1)k−1

wk−1 pk−1q(k−1
2 )

− (wpq; q)k−1(−1)k

wk−1 pk−1q(k−1
2 )

.

This can now be summed, and we get an explicit formula for bk that we write as a lemma,
for further reference.

Lemma 2 For all k ≥ 1,

bk =
k−1∑

j=0

q(k
2)−( j

2)(−pw)k− j

(wpq j+1; q)k− j
.

��

We notice that

∑

k≥1

q(k
2)(−pq jw)k

(wpq j+1; q)k
= −pq jw;

the corresponding computation appears for instance in [13], and it uses Heine’s transforma-
tion formula. Therefore

∑

k≥1

bk =
∑

j≥0

∑

k≥1

q(k
2)(−pq jw)k

(wpq j+1; q)k
= −

∑

j≥0

pq jw = −w = z

1 − z
,

which is combinatorially clear, since it simply describes all words.
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Now, we compute the average of the M-parameter:

∑

k≥1

kbk =
∑

k≥1

k
k−1∑

j=0

q(k
2)−( j

2)(−pw)k− j

(wpq j+1; q)k− j

=
∑

j≥0

∑

k≥1

(k + j)
q(k

2)(−pq jw)k

(wpq j+1; q)k

=
∑

j≥0

∑

k≥1

k
q(k

2)(−pq jw)k

(wpq j+1; q)k
−

∑

j≥0

j pq jw

=
∑

j≥0

d

dt

∑

k≥0

q(k
2)(−pq jwt)k

(wpq j+1; q)k

∣∣∣∣
t=1

− q

p
w.

The inner sum we will attack with Heine’s transform: (see [1])

∑

n≥0

(a)n(b)ntn

(q)n(c)n
= (b)∞(at)∞

(c)∞(t)∞

∑

n≥0

(c/b)n(t)nbn

(q)n(at)n
.

We replace q(k
2)(−1)k by limε→0 εk(1/ε)k :

∑

k≥0

q(k
2)(−pq jwt)k

(wpq j+1; q)k
= lim

ε→0

∑

k≥0

(1/ε)k(q)k(pq jwtε)k

(wpq j+1; q)k(q)k

= lim
ε→0

(q)∞(pq jwt)∞
(wpq j+1)∞(pq jwtε)∞

∑

k≥0

(wpq j )k(pq jwtε)kqk

(q)k(pq jwt)k

= (q)∞(pq jwt)∞
(wpq j+1)∞

∑

k≥0

(0)k(wpq j )kqk

(q)k(pq jwt)k

= (q)∞(pq jwt)∞
(wpq j+1)∞

(wpq j )∞
(pq jwt)∞(q)∞

∑

k≥0

(t)k(q)k(wpq j )k

(q)k

= (1 − wpq j )
∑

k≥0

(t)k(wpq j )k .

Now the differentiation w.r.t. t , followed by t = 1 simplifies this very much:

−(1 − wpq j )
∑

k≥1

(q)k−1(wpq j )k .

We are at
∑

k≥1

kbk = −
∑

j≥0

(1 − wpq j )
∑

k≥0

(q)k(wpq j )k+1 − q

p
w

= −
∑

j≥0

∑

k≥0

(q)k(wpq j )k+1 +
∑

j≥0

∑

k≥0

(q)k(wpq j )k+2 − q

p
w

= −
∑

k≥0

(q)k(wp)k+1

1 − qk+1 +
∑

k≥1

(q)k−1(wp)k+1

1 − qk+1 − q

p
w
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Consecutive records in geometrically distributed words 167

= −
∑

k≥1

(q)k(wp)k+1

1 − qk+1 +
∑

k≥1

(q)k−1(wp)k+1

1 − qk+1 − w

p

=
∑

k≥1

(q)k−1qk(wp)k+1

1 − qk+1 − w

p
.

We note that for j ≥ 1

[w j+1]
∑

k≥1

kbk = (q) j−1q j p j+1

1 − q j+1

and

[w1]
∑

k≥1

kbk = − 1

p
.

Therefore (see [6] about how [zn] f (z) and [wn] f (w/(w − 1)) are related)

[zn+1]
∑

k≥1

kbk = (−1)n+1[wn+1](1 − w)n
∑

k≥1

kbk

= (−1)n+1
n∑

j=0

(
n

n − j

)
(−1)n− j [w j+1]

∑

k≥1

kbk

=
n∑

j=0

(
n

j

)
(−1) j+1[w j+1]

∑

k≥1

kbk

= 1

p
+

n∑

j=1

(
n

j

)
(−1) j+1 (q) j−1q j p j+1

1 − q j+1 .

This expression possesses an integral representation (Rice’s method [4]):

[zn+1]
∑

k≥1

kbk = 1

p
+ 1

2π i

∫

C

(−1)n+1n!
z(z − 1) . . . (z − n)

(q)z−1qz pz+1

1 − qz+1 dz.

The curve C encircles the poles 1, 2, . . . , n and no others. To get asymptotics, we must collect
the (negative) residues at 0 and at z = χk = 2π ik

L . We need the local expansion of the inte-
grand around z = 0. We notice that (q)z−1 = (q)∞/(qz)∞ and (qz)∞ = (1 − qz)(qz+1)∞
and

(qz+1)∞ =
∏

k≥1

(1 − qz+k) ∼ (q)∞ + (q)∞
∑

k≥1

Lqk

1 − qk
· z.

Providing this, the residue at z = 0 can be computed by a computer. For the residue at z = χk ,
we notice that (qχk+1)∞ = (q)∞, and

(−1)n+1n!
z(z − 1) . . . (z − n)

∣∣∣∣
z=χk

= n!�(−χk)

�(n + 1 − χk)
∼ nχk �(−χk).

Therefore the negative residue at z = χk is

−nχk �(−χk)
1

L
pχk .
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168 K. Oliver, H. Prodinger

Summarizing, we have asymptotically evaluated the average of the M-parameter:

Theorem 3 The average of the M-parameter is asymptotically given by

E(M) ∼ logQ n − α + log(p)

L
+ γ

L
+ 1

2
+ δ(logQ(pn)),

where the periodic function δ(x) is given as

δ(x) = − 1

L

∑

k 	=0

�(−χk)e
2π ikx .

To obtain the second (factorial) moment, we compute

∑

k≥2

k(k − 1)bk =
∑

k≥1

k(k − 1)

k−1∑

j=0

q(k
2)−( j

2)(−pw)k− j

(wpq j+1; q)k− j

=
∑

j≥0

∑

k≥1

(k + j)(k + j − 1)
q(k

2)(−pq jw)k

(wpq j+1; q)k

=
∑

j≥0

∑

k≥1

k(k − 1)
q(k

2)(−pq jw)k

(wpq j+1; q)k
+2

∑

j≥0

j
∑

k≥1

k
q(k

2)(−pq jw)k

(wpq j+1; q)k
− 2q2

p2 w.

We need

∑

j≥0

j
∑

k≥1

k
q(k

2)(−pq jw)k

(wpq j+1; q)k
= −

∑

j≥0

j (1 − wpq j )
∑

k≥1

(q)k−1(wpq j )k

= −
∑

j≥0

j
∑

k≥1

(q)k−1(wpq j )k +
∑

j≥0

j
∑

k≥1

(q)k−1(wpq j )k+1

= −
∑

k≥1

(q)k−1(wp)kqk

(1 − qk)2 +
∑

k≥1

(q)k−1(wp)k+1qk+1

(1 − qk+1)2

= −wq

p
+

∑

k≥1

(q)k−1(wp)k+1q2k+1

(1 − qk+1)2 .

Thus far we are at

∑

k≥2

k(k − 1)bk =
∑

j≥0

∑

k≥1

k(k − 1)
q(k

2)(−pq jw)k

(wpq j+1; q)k
+ 2

∑

k≥1

(q)k−1(wp)k+1q2k+1

(1 − qk+1)2 − 2q

p2 w.

We compute

∑

j≥0

∑

k≥1

k(k − 1)
q(k

2)(−pq jw)k

(wpq j+1; q)k
=

∑

j≥0

d

dt2 (1 − wpq j )
∑

k≥0

(t)k(wpq j )k
∣∣∣
t=1

= 2
∑

j≥0

(1 − wpq j )
∑

k≥2

(q)k−1T (k − 1)(wpq j )k
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with

T (k) =
k∑

i=1

qi

1 − qi
.

We simplify

∑

j≥0

∑

k≥1

k(k − 1)
q(k

2)(−pq jw)k

(wpq j+1; q)k

= 2
∑

k≥1

(q)k T (k)(wp)k+1

1 − qk+1 − 2
∑

k≥1

(q)k−1T (k − 1)(wp)k+1

1 − qk+1

= 2
∑

k≥1

(q)k−1[1 − T (k − 1)](wp)k+1qk

1 − qk+1 .

So

∑

k≥2

k(k − 1)bk = 2
∑

k≥1

(q)k−1[1 − T (k − 1)](wp)k+1qk

1 − qk+1 + 2
∑

k≥1

(q)k−1(wp)k+1q2k+1

(1 − qk+1)2 − 2q

p2 w.

and

[w j+1]
∑

k≥2

k(k − 1)bk = 2
(q) j−1[1 − T ( j − 1)]p j+1q j

1 − q j+1 + 2
(q) j−1 p j+1q2 j+1

(1 − q j+1)2

for j ≥ 1, and −2q
p2 for j = 0. Therefore

[zn+1]
∑

k≥1

k(k − 1)bk = (−1)n+1[wn+1](1 − w)n
∑

k≥1

k(k − 1)bk

= (−1)n+1
n∑

j=0

(
n

n − j

)
(−1)n− j [w j+1]

∑

k≥1

k(k − 1)bk

=
n∑

j=0

(
n

j

)
(−1) j+1[w j+1]

∑

k≥1

k(k − 1)bk

= 2q

p2 + 2
n∑

j=1

(
n

j

)
(−1) j+1(q) j−1 p j+1q j

[−T ( j − 1)

1 − q j+1 + 1

(1 − q j+1)2

]
.

Again, there is an integral representation for it:

[zn+1]
∑

k≥1

k(k − 1)bk

= 2q

p2 + 2

2π i

∫

C

(−1)nn!
z(z − 1) . . . (z − n)

(q)z−1 pz+1qz
[

T (z − 1)

1 − qz+1 − 1

(1 − qz+1)2

]
dz.

Note that

T (k) =
k∑

j=1

q j

1 − q j
= α −

∑

j>k

q j

1 − q j
= α −

∑

j≥1

q j+k

1 − q j+k
,
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170 K. Oliver, H. Prodinger

whence we can take

T (z) = α −
∑

j≥1

q j+z

1 − q j+z
.

We expect a triple pole at z = 0, and so we need to expand T (z − 1):

T (z − 1) = T (z) − qz

1 − qz
= α −

∑

j≥1

q j+z

1 − q j+z
− qz

1 − qz

∼ βLz − 1

Lz
+ 1

2
− Lz

12
,

with

β =
∑

j≥1

q j

(1 − q j )2 .

Also note the expansion

(q)z = (q)∞
(qz+1)∞

∼ 1 − αLz + α2 + β

2
L2z2.

Reading off the negative residue at z = 0 gives

(logQ n)2 + 2

(
γ + log(p)

L
− α

)
logQ n + log2(p) + γ 2 + π2/6 + log(p)

L2 − 2α(log(p) + γ )

L
+ α2 − β− 1

6
.

To compute the variance, we add the expectation and subtract the square of the expectation
and find (many simplifications occur!)

π2

6L2 + 1

12
− β.

We have always computed the coefficient of zn+1 for convenience, but it does not matter for
the asymptotic formula. We summarize:

Theorem 4 The average and variance of the M-parameter are asymptotically given by

EM(n) ∼ logQ n − α + log(p)

L
+ γ

L
+ 1

2
+ δE (logQ n),

VM(n) ∼ π2

6L2 + 1

12
− β + δV (logQ n).

Here, δ.(x) is an unspecified periodic function of period 1 and small amplitude. Its Fou-
rier coefficients could be computed in principle. The residues come from the poles at
z = χk = 2π ik

L .

3 Conclusion

While the M-parameter was challenging, there are other interesting ones. We mention the
sum of the positions of the underlined elements. In our running example

1 3 1 1 2 4 3 5 3 5 1 4 2 1 3 4 6 5 1,
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Consecutive records in geometrically distributed words 171

the underlined elements are in positions 1, 3, 4, 5, 7, 9, 12, 16, 18, therefore this parameter
of the word is

1 + 3 + 4 + 5 + 7 + 9 + 12 + 16 + 18 = 75.

This parameter was introduced for ordinary records in permutations in [9] and adapted to
words in [15]. For the reader’s convenience, we repeat the results about the expectation.

Theorem 5 The expected value of the sum of the positions of records, in random words of
length n, is given by

En = p
n+1∑

k=2

(
n + 1

k

)
(−1)k k − 1

1 − qk−1 .

The expected value of the sum of the positions of records, in random words of length n,
has the asymptotic expansion

En = pn

log Q
(1 + δ(logQ n)) + O(1),

where the periodic function (of small amplitude) is given by

δ(x) =
∑

k 	=0

χk�(−1 − χk)e
2π ikx .

However, in the present context, the relevant recursions (that are not too hard to set up) seem
to be quite involved. It might not be hopeless, but at that stage we decided not to go further.

Acknowledgments Thanks are due to Guy Louchard who spotted an error in an earlier version of this paper.
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