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Abstract. Stanley and Callan considered Dyck paths where the lengths of the run to the origin is
always odd resp. the last one even, and the other ones odd. These subclasses are also enumerated by
(shifted) Catalan numbers. We study the (average) height of these objects, assuming all such Dyck
paths of length 2n to be equally likely, and find that it behaves like ~ +/7n, as in the unrestricted
case. This classic result for unrestricted Dyck paths is from de Bruijn, Knuth and Rice [2], and to
this day, there are no simpler proofs for this, although more general results have been obtained by
Flajolet and Odlyzko [4].
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1. Introduction

It is a folklore result that the number of Dyck paths of length 2n (=semi-length n) is the Catalan number
n%rl (2:) Two standard texts that describe this are [11, 7]. Callan [1] pointed out that there are interesting
subclasses, which are enumerated by Catalan number %(2::12). The first one was already known to
Stanley [11]: each (maximal) run back to the x-axis consists of an odd number of down steps. The
second one is due to Callan himself: For the last sojourn, the (maximal) run back to the x-axis consists
of an even number of down steps, for the other ones, these lengths are still odd. This works for a semi-
length n > 2; the Stanley instance works for a semi-length n > 1, and we even allow the empty path.

In this paper, we confirm these results by generating functions, and then consider the height of them.
For ordinary Dyck paths, it is a classical result [2] that the average height is asymptotic to /7n; in the
cited paper, this was discussed in the equivalent notion of planar (=planted plane) trees.
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Our generating functions are either w.r.t. length or semi-length, but that will always be clear from the
context. To set them up, we start by marking a step by z, but when this is achieved, we switch back to
the more convenient semi-length. Here are a few basic formulz:
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enumerates Dyck paths w.r.t. semi-length. The height of a Dyck path is the maximum y-coordinate of
it. The generating function C" (z) where the coefficient of 2" is the number of Dyck paths of length 2n
and height < h is given by
1] 1] )\iLJrl - )\]21+1
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with
1+v1—-4z
5 .
Notice that in this formula, we can take the limit for » — oo, and get C(z) = 1/A1(z). This counts
Dyck paths without height restrictions, i. e., all Dyck paths. Here are a few references: [2, 9, 8, 10]

A2 =

2. Dyck paths a la Stanley

A natural way to decompose Dyck paths is with respect to sojourns: A sojourn is a part of such a
path between two consecutive visits to the xz-axis. The natural decomposition of a sojourn (with the
restrictions a la Stanley) is: an up step, a closed Dyck path, repeated ¢ times (which leads us to level 7),
followed by an up step, and then the final 7 + 1 down steps that bring us back to the z-axis. The level ¢
has to be even, to satisfy the constraints.

Figure 1. A lattice path of length 36 (semi-length 18) and height 6; the run back to the x-axis has length 5. The
decomposition is indicated by vertical lines.

So the generating function (at the moment z is marking steps) of a sojourn is

D=3 (:0)*-z-2%"" = 1_27246@
>0

Eventually we need

1 1/2n—2
1-D 20 +;n<n—1>z ’
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since we can have an arbitrary number of sojourns. Notice that we also allow the empty path for conve-
nience.
The decomposition also works if we look at paths whose height is restricted by h:

Zc[h—l]zc[h—Q] o Zc[h—Qi} 22i+2’ (2)

and 2i < h. But C!" is a known quantity (1), as mentioned in the introduction. So

h—2i+1 h—2i+1
24 >‘1 — )‘2

h—1 h—2 h—2i
o020l I = NV
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We replace 22 by z, which is not essential, but is slightly more pleasant. So we look at
h—2i+1 h—2i+1 2i+1 h—2i+1

i\l — Ay il _ u* 1—u*
= : ,
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. . o o
with the principled substitution z = [(E=nEL

And now we need the generating function D! (z) of a sojourn with height < h; the enumeration is
with respect to semi-length:

W2l k2

Ry —
REOEEDY (1t )2+ 1 ghtl
0<i<h/2

A routine computation leads to

2 [ h hi 2 LM
p_ v |17 () *° wt O () 3
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(We use Iverson’s notation: [/ is even]] = 1 iff & is even, and O otherwise.)

Theorem 2.1. The generating function of Dyck paths of height < h with h > 0 where each run back to
the z-axis has odd length, and z marks the semi-length, is given by

1
1 — DR’

where D" is given in (3). The variables z and u are linked via

U 1—-+v1-4z 1

Thatw?T YT 2

Now we discuss approximations, since it seems to be hopeless to derive anything explicit that is of
reasonable complexity.

We are going to use singularity analysis of generating functions, as described in the book [7]. In the
context of the analysis of the height, we refer to [8, 9, 6, 10, 4, 5].
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The general method is that we must look at u = 1 («» z = i, which is the dominating singularity)
and approximate the relevant functions there. Once this is achieved, very general transfer theorems allow
to translate this information to the asymptotics of the coefficients. —

We see that the ugly terms with exponent L%j almost cancel out. Not only that, u?/(1 + u)? ~ %
when u ~ 1, so these terms don’t contribute much, and we will leave them out from now on. (We use ~
here for an expansion in a neighbourhood of v = 1, or, equivalently, z = %. Technicalities about such
neighbourhoods can be found in [5].)

We will work with

Pl _ U [ I ul } .
1—ultlj1+20 24w
Note that the generating function of paths of height > h is given by
1 1 1+ 2u 1 14 2u 1
1-D 1-DW ™~ 1+u 1-DW ™~ T1+u 1- DM
(1 —u)(1 + 2u)uht! (1 — w)ultt

IT+w@+u— 1+ 2wuhtD) "~ 21— uhtl)
The generating function of the average height is, apart from normalization, given by
h

14 2u 1 1—u U
E(z) = [ . ]N .
(2)=> 1+u 1- DN 2 Zl—uh
h>0 h>1

It was computed before (in the Appendix, we sketch how this is done), that, with u = et

h

U logt v
Zl—uh S
h>1

Putting things together we get for z ~ i sSu~1lst~0
1
E(z) ~ ~5 logt + K,

for an explicit constant K. Now we translate that into an expression in terms of z:
t~2v1—4z.

Therefore 1
E(z) ~ ~1 log(1 —4z) + K".

Singularity analysis now produces the asymptotic formula

n—1

[2"]B(z) ~ ~[2"] lo(1 — 4) =

For the normalization, notice that

1 <2n - 2) 47 frn 82,

n\n—1

Dividing through, we find, that the average height is ~ /7n. This is the same behaviour as for the
ordinary Dyck paths, which is perhaps not too surprising.
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Theorem 2.2. The average height of Dyck paths where each run back to the x-axis has odd length, all
such paths of length 2n being equally likely, is asymptotically given by

Jmn.

3. Callan’s version

Callan [1] considers Dyck paths were the last return to the z-axis has even length, but all the other ones
(if any) have odd length. For semi-length n > 2, the enumeration leads to the shifted Catalan numbers
as well. For that, we must consider the last sojourn

4
2i—1 2% _ 2C
2O =

We replace, as before, 22 by z, so we consider the semi-length instead of the number of steps. The overall
generating function is then

22C 1/2n-2\ ,

Now we want to consider again the average height of such paths. We must consider the last sojourn, as
it is different from before.
The decomposition (2) also works if we look at path whose height is restricted by h:

O, 0h=2 L olh1-2i) 20

and 27 < h. So
/\111—21—1-2 _ )\i21—22+2
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We replace again 22 by z. So we look at

)\]il*2l+2 _ )\3721%*2 o uQi 1— uh—2i+2
z = -
)\fll+1 _ )\]21+1 (1 + u)2l+1 1— uh+1
And now we need
21 h—2i+2
G[h} _ Z u 1—u
(1 + u)2z’+1 1— uh—l—l
1<i<h/2

A routine computation leads to
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We approximate as before:

Gl — 1 u? - uhtl
1+uw)(1l—ut)) | 1+2u 2+4u]
Notice that without height restriction this leads to
GI] 1+2u u? u?

1-Db  T+u (I+uw(d+2u) (I+u)?
The generating function of paths a la Callan of height > h is approximated by

Glo<] Gl u? Gl
1—Dll  1—DIM — (1+wu)? 1-— DM
(1 —u)(1 + 2u)uh*! (1 — u)ut!
(4 u)(2+u— (1 +2u)uhtl) 21 —uhtl)’
with .
1—wuhtl |1 4+2u 24u|

Since we also obtained this approximation for the paths a la Stanley, the average height is here ~ /mn
as well.

Theorem 3.1. The average height of Dyck paths where each run back to the z-axis has odd length,
except for the last one, whose run back to the xz-axis has even length, all such paths of length 2n being
equally likely, is asymptotically given by /7n.

Appendix

In order to use the powerful transfer machinery from [5], we need to establish a local expansion. This
short description is borrowed from [3] and [8].

The behaviour of .

f(t) ::Zliie—ht

h>1

for t — 0 is found using the Mellin transform [3]: One rewrites it as

flty= > ™

hk>1

notices that it is a harmonic sum, and transforms it:

fr(s)= Y (hk)~°I(s) = C*(s)T(s).

hk>1
Now there is the inversion formula:
1 24i00
f) = 5= ()T ()t "ds.
271
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Shifting the line of integration to the left and collecting residues gives the asymptotic behaviour of f(t)
as t — 0. For instance, the first encountered pole is at s = 1, and the residue evaluates to

logt
logt oy

t t’

where +y is Euler’s constant.
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