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Abstract. Previous lists of continued fraction expansions related to series of the
Rogers-Ramanujan type are augmented by some instances derived from Göllnitz’
little partition theorem.

1. Introduction

One of the present authors has been trying to collect as many beautiful continued
fraction expansions as possible for quotients of series which resemble the celebrated
Rogers-Ramanujan identities [3, 4, 2].

However, a few nice examples have been overlooked. The present note addresses
them; they are motivated by the little theorem of Göllnitz [1]:∑

n≥0

qn2+n(−q; q2)n

(q2; q2)n

= (−q2; q4)∞(−q3; q4)∞(−q4; q4)∞.

∑
n≥0

qn2+n(−q−1; q2)n

(q2; q2)n

= (−q; q4)∞(−q2; q4)∞(−q4; q4)∞.

We use standard notation: (x; q)n =
n∏

i=1

(1 − xqi−1), where n is either a non-negative

integer or ∞.
Set

F (z, w) =
∑
n≥0

zn qn2
(−qw; q2)n

(q2; q2)n

,

G(z, w) =
∑
n≥0

zn qn2
(−q−1w; q2)n

(q2; q2)n

,

then F (q, 1) and G(q, 1) are the series in the little theorem of Göllnitz. We found the
continued fraction expansion of zF (z, w)/G(z, w). Likewise, we found some variations
by replacing (q2; q2)n in the denominators by (q; q)2n(+1). Also we investigated instances

where qn2
isn’t present. Typically, such series (without the factor qn2

) are easier, and it
is not unlikely that our continued fraction results for them are known and/or derivable
from known formulæ. However, they can easily be derived in the style of the other
expansions in our note, so we just state them for completeness.

Our method is as follows: We set s0 = F , s−1 = G, and

sk+1 =
sk−1 − aksk

z
;
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the numbers ak are uniquely defined to make all the sk’s power series. They are guessed.
After that, the series sk are also guessed. Once all these quantities are known, a proof
by induction is just routine. We will show this on one example, and for the other
instances, just present the ak and sk. Then:

zF

G
=

zs0

a0s0 + zs1

=
z

a0 +
zs1

a1s1 + zs2

=
z

a0 +
z

a1 +
zs2

a2s2 + zs3

=
z

a0 +
z

a1 +
z

a2 +
z

. . .

.

2. Results

Theorem 1. Set

F =
∑
n≥0

zn qn2
(−qw; q2)n

(q2; q2)n

, G =
∑
n≥0

zn qn2
(−q−1w; q2)n

(q2; q2)n

.

Then
zF

G
=

z

a0 +
z

a1 +
z

a2 +
z

. . .

,

with

a2k =
qk2−2kwk

(−qw; q2)k

,

a2k+1 =
q−k2−2k(−qw; q2)k

wk+1
.

The auxiliary series are

s2k = qk2
∑
n≥0

zn qn2+2nk(−qw; q2)n+k

(q2; q2)n

,

s2k+1 = q2k2+2k
∑
n≥0

zn qn2+2n(k+1)(−q1+2kw; q2)nw
k+1

(q2; q2)n

.

Proof. We consider for n ≥ 1

[zn−1]
s2k−1 − a2ks2k

z
= [zn]s2k−1 − a2k[zn]s2k

= q2(k−1)2+2(k−1) q
n2+2nk(−q−1+2kw; q2)nw

k

(q2; q2)n

− q2k2−2kwk qn2+2nk(−q1+2kw; q2)n

(q2; q2)n

=
q2k2−2k+n2+2nk(−q1+2kw; q2)n−1w

k

(q2; q2)n

[
(1 + q−1+2kw)− (1 + q−1+2k+2nw)

]
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=
q2k2−1+n2+2nk(−q1+2kw; q2)n−1w

k+1

(q2; q2)n

(1− q2n)

=
q2k2+2k+(n−1)2+2(n−1)(k+1)(−q1+2kw; q2)n−1w

k+1

(q2; q2)n−1

= [zn−1]s2k+1.

Similarly,

[zn−1]
s2k − a2k+1s2k+1

z
= [zn]s2k − a2k+1[z

n]s2k+1

=
qn2+2nk+k2

(−qw; q2)n+k

(q2; q2)n

− qn2+2n(k+1)+k2
(−qw; q2)n+k

(q2; q2)n

=
qn2+2nk+k2

(−qw; q2)n+k

(q2; q2)n−1

= [zn−1]s2k+2.

These computations also show that the constant term in sk−1−aksk vanishes, thus our
(model) proof is finished. �

The continued fractions often look more attractive when they are transformed:

z

a0 +
z

a1 +
z

a2 +
z

. . .

=
z/a0

1 +
z/a0a1

1 +
z/a1a2

1 +
z/a2a3

. . .

We show this only for the result in the previous theorem, which takes the form

zF

G
=

z

1 +
zw

1 +
z(1 + qw)q

1 +
zwq4

1 +
z(1 + q3w)q3

. . .

.

Theorem 2. Set

F =
∑
n≥0

zn qn2
(−qw; q2)n

(q; q)2n

, G =
∑
n≥0

zn qn2
(−q−1w; q2)n

(q; q)2n

.

Then

a2k =
qk2−2k(−q2/w; q2)k−1(1− q4k−1)wk

(−qw; q2)k

, k ≥ 1, a0 = 1,

a2k+1 =
q−k2−2k(−qw; q2)k(1− q4k+1)

(−q2/w; q2)kwk+1
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and

s2k = qk2
∑
n≥0

zn qn2+2nk(−qw; q2)k(−q; q2)n+k

(q2; q2)n(q; q2)2k+n(−q; q2)k

,

s2k+1 = q2k2+2k
∑
n≥0

zn qn2+2n(k+1)(−q; q2)n+k(−q2/w; q2)kw
k+1

(q2; q2)n(q; q2)2k+n+1(−q; q2)k

.

Theorem 3. Set

F =
∑
n≥0

zn (−qw; q2)n

(q; q)2n

, G =
∑
n≥0

zn (−q−1w; q2)n

(q; q)2n

.

Then

a2k =
q−k2−k(−q2/w; q2)k−1(1− q4k−1)wk

(−qw; q2)k

, k ≥ 1, a0 = 1,

a2k+1 =
qk2−k+1(−qw; q2)k(1− q4k+1)

(−q2/w; q2)kwk+1
,

and

s2k = q2k2−k
∑
n≥0

zn (−qw; q2)n+k

(q2; q2)n(q; q2)2k+n

,

s2k+1 = qk2−1
∑
n≥0

zn (−q1+2kw; q2)n(−q2/w; q2)kw
k+1

(q2; q2)n(q; q2)2k+n+1

.

Theorem 4. Set

F =
∑
n≥0

zn qn2
(−qw; q2)n

(q; q)2n+1

, G =
∑
n≥0

zn qn2
(−q−1w; q2)n

(q; q)2n

.

Then

a2k =
qk2−2k(−q2/w; q2)k(1− q4k+1)wk

(−qw; q2)k

,

a2k+1 =
q−k2−2k(−qw; q2)k(1− q4k+3)

(−q2/w; q2)k+1wk+1

and

s2k = qk2
∑
n≥0

zn qn2+2nk(−qw; q2)n+k

(q2; q2)n(q; q2)2k+n(1− q4k+2n+1)
,

s2k+1 = q2k2+2k
∑
n≥0

zn qn2+2n(k+1)(−q1+2k; q2)n(−q2/w; q2)k+1w
k+1

(q2; q2)n(q; q2)2k+n+1(1− q4k+2n+3)
.

Theorem 5. Set

F =
∑
n≥0

zn (−qw; q2)n

(q; q)2n+1

, G =
∑
n≥0

zn (−q−1w; q2)n

(q; q)2n

.



CONTINUED FRACTION EXPANSIONS 5

Then

a2k =
q−k2−3k(−q2/w; q2)k(1− q4k+1)wk

(−qw; q2)k

,

a2k+1 =
qk2+k+1(−qw; q2)k(1− q4k+3)

(−q2/w; q2)k+1wk+1

and

s2k = q2k2+k
∑
n≥0

zn (−qw; q2)n+k

(q2; q2)n(q; q2)2k+n(1− q4k+2n+1)
,

s2k+1 = qk2−1
∑
n≥0

zn (−q1+2k; q2)n(−q2/w; q2)k+1w
k+1

(q2; q2)n(q; q2)2k+n+1(1− q4k+2n+3)
.

Theorem 6. Set

F =
∑
n≥0

zn qn2
(−qw; q2)n

(q; q)2n+1

, G =
∑
n≥0

zn qn2
(−q−1w; q2)n

(q; q)2n+1

.

Then

a2k =
qk2−2k(−q4/w; q2)k−1(1− q4k+1)wk

(−qw; q2)k

, k ≥ 1, a0 = 1,

a2k+1 =
q−k2−2k(−qw; q2)k(1− q4k+3)

(−q4/w; q2)kwk+1

and

s2k = qk2
∑
n≥0

zn qn2+2nk(−qw; q2)n+k

(q2; q2)n(q; q2)2k+n(1− q4k+2n+1)
,

s2k+1 = q2k2+2k
∑
n≥0

zn qn2+2n(k+1)(−q1+2k; q2)n(−q4/w; q2)kw
k+1

(q2; q2)n(q; q2)2k+n+1(1− q4k+2n+3)
.

Theorem 7. Set

F =
∑
n≥0

zn (−qw; q2)n

(q; q)2n+1

, G =
∑
n≥0

zn (−q−1w; q2)n

(q; q)2n+1

.

Then

a2k =
q−k2−3k(−q4/w; q2)k−1(1− q4k+1)wk

(−qw; q2)k

, k ≥ 1, a0 = 1

a2k+1 =
qk2+k+1(−qw; q2)k(1− q4k+3)

(−q4/w; q2)kwk+1

and

s2k = qk2
∑
n≥0

zn (−qw; q2)n+k

(q2; q2)n(q; q2)2k+n(1− q4k+2n+1)
,

s2k+1 = qk2−1
∑
n≥0

zn (−q1+2k; q2)n(−q4/w; q2)kw
k+1

(q2; q2)n(q; q2)2k+n+1(1− q4k+2n+3)
.
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