
FORMULÆ RELATED TO THE q-DIXON FORMULA WITH
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Abstract. The q-analogue of Dixon’s identity involves three q-binomial coef-

ficients as summands. We find many variations of it that have beautiful corol-

lories in terms of Fibonomial sums. Proofs involve either several instances
of the q-Dixon formula itself or are “mechanical,” i. e., use the q-Zeilberger

algorithm

1. Introduction

Define the second order linear sequence {Un} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1.

For n ≥ k ≥ 1, define the generalized Fibonomial coefficient by{
n

k

}
U

:=
U1U2 . . . Un

(U1U2 . . . Uk)(U1U2 . . . Un−k)

with
{
n
0

}
U

=
{
n
n

}
U

= 1. When p = 1, we obtain the usual Fibonomial coeffi-

cient, denoted by
{
n
k

}
F

. For more details about the Fibonomial and generalized

Fibonomial coefficients, see [2, 3].
Our approach will be as follows. We will use the Binet forms

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
with q = β/α = −α−2, so that α = i/

√
q where α, β =

(
p±

√
p2 + 4

)
/2.

Throughout this paper we will use the following notations: the q-Pochhammer
symbol (x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and the Gaussian q-binomial coef-
ficients [

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

When x = q, we sometimes use the notation (q)n instead of (q; q)n. We conve-
niently adopt the notation that

[
n
k

]
q

= 0 if k < 0 or k > n.

The link between the generalized Fibonomial and Gaussian q-binomial coeffi-
cients is {

n

k

}
U

= αk(n−k)

[
n

k

]
q

with q = −α−2.

We recall the q-analogue of Dixon’s identity [1, 4], which is central in this paper:∑
k

(−1)kq
k
2 (3k+1)

[
a+ b

a+ k

]
q

[
b+ c

b+ k

]
q

[
c+ a

c+ k

]
q

=
[a+ b+ c]!

[a]![b]![c]!
,
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where [n]! =
∏n

i=1
1−qi

1−q = (q; q)n/(1− q)n.

Recently the authors of [5, 6] proved sum identities including certain generalized
Fibonomial sums and their squares with or without the generalized Fibonacci and
Lucas numbers. We recall such a result: if n and m are both nonnegative integers,
then from [5], we have that

2n∑
k=0

{
2n

k

}
U

U(2m−1)k = Tn,m

m∑
k=1

{
2m− 1

2k − 1

}
U

U(4k−2)n,

where

Tn,m =


n−m∏
k=0

V2k if n ≥ m,
m−n−1∏
k=1

V −1
2k if n < m,

and three similar formulæ.
From [6], we have that for any positive integer n,

2n∑
k=0

i±k

{
2n

k

}
U

= i±n
n∏

k=1

V2k−1,

2n∑
k=0

{
2n

k

}2

U

=

n∏
k=1

V2kU2(2k−1)

U2k

and

n∑
k=0

(−1)k
{

2n+ 1

2k + 1

}
U

= (−1)(
n
2)


n∏

k=1

V 2
k if n is odd,

n∏
k=1

V2k if n is even.

In this paper, we consider some sum formulæ whose terms include certain triple
Fibonomial coefficients, with or without extra Fibonacci numbers. To be system-
atic, we first organize the q-Dixon type identities in a list, then discuss the proofs
of them, and then get a list of Fibonacci type identities as corollaries.

2. Triple Gaussian q-Binomial Sums

The identities in this section hold for all nonnegative integers n.

(1)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−1) = (−1)nq−

n
2 (3n+1)

[
2n

n

]
q

[
3n+ 1

n

]
q

.

(2)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)(1 + q2k)

= 2(−1)nq−
n
2 (3n+1)

[
2n

n

]
q

[
3n+ 1

n

]
q

.
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(3)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)(1− q2k)

= 2(−1)nq−
n
2 (3n+1)(1− q2n+1)

[
2n

n

]
q

[
3n

n− 1

]
q

.

(4)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 2

k

]
q

(−1)kq
k
2 (3k−6n−3)

(
1− qk

)
= (−1)n (1− q) q−n

2 (3n+1)

[
2n

n+ 1

]
q

[
3n+ 1

n

]
q

.

(5)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k

]
q

(−1)
k
q

k
2 (3k−6n−5)

(
1− qk

)2
= (−1)n+1q−

1
2 (n+1)(3n+2)

(
1− q2n

) (
1− q2n+3

) (
1− q2n+4

)
(1− qn−1)

[
2n

n− 2

]
q

[
3n+ 1

n− 1

]
q

.

(6)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−1)

= (−1)nq−
n
2 (3n+1) 1− q2n+3

1− qn

[
2n

n− 1

]
q

[
3n+ 2

n

]
q

.

(7)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−5)

(
1− q2k

)2
= (−1)n+1q−

1
2 (n+1)(3n+2)

(
1− q2n

) (
1− q2n+1

) (
1− q2n+2

) (
1− q2n+3

)
×
[

2n

n− 1

]
q

[
3n

n− 1

]
q

.

(8)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q

3
2k(k−2n−1)

(
1− q2k

)
= 2(−1)nq−

n
2 (3n+1)

(
1− q2n+3

) [ 2n

n− 1

]
q

[
3n+ 1

n

]
q

.
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(9)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−3)

(
1 + qk

)2
= 4(−1)nq−

n
2 (3n+1) 1− q2n+3

1− qn

[
2n

n− 1

]
q

[
3n+ 2

n

]
q

.

(10)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 2

]
q

(−1)
k
q

k
2 (3k−6n+1)

= (−1)nq−
n
2 (3n−1) 1− q2n+3

1− qn

[
2n

n− 1

]
q

[
3n+ 2

n

]
q

.

(11)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 2

]
q

(−1)
k
q

k
2 (3k−6n−1)

(
1− qk

)2
= (−1)nq−

n
2 (3n+1)

(
1− q2n

) (
1− q2n+3

) (
1− q2n+4

)
(1− qn−1)

[
2n

n− 2

]
q

[
3n+ 1

n− 1

]
q

.

(12)

2n∑
k=0

[
2n

k

]2

q

[
2n+ 4

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−3)

(
1− qk

)
= (−1)nq−

n
2 (3n+1)

(
1− q2

) 1− q2n+4

1− qn−1

[
2n

n− 2

]
q

[
3n+ 2

n

]
q

.

(13)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 2

k

]
q

(−1)kq
k
2 (3k−6n−5)

(
1− qk

)
= (−1)n+1q−

1
2 (n+1)(3n+2)

(
1− q2n+2

) [2n+ 1

n

]
q

[
3n+ 2

n

]
q

.

(14)

2n+1∑
k=0

[
2n+ 1

k

]
q

[
2n+ 2

k

]2

q

(−1)kq
k
2 (3k−6n−5)

= (−1)n+1q−
1
2 (n+1)(3n+2)

[
2n+ 1

n

]
q

[
3n+ 3

n+ 1

]
q

.
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(15)

2n+1∑
k=0

[
2n+ 1

k

]
q

[
2n+ 2

k

]2

q

(−1)kq
k
2 (3k−6n−7)

(
1− qk

)2
= (−1)n+1q−

1
2 (n+1)(3n+4)

(
1− q2n+2

)2 [2n+ 1

n

]
q

[
3n+ 2

n

]
q

.

(16)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 2

k

]
q

(−1)kq
k
2 (3k−6n−5)

(
1 + qk

)
= (−1)n+1q−

1
2 (n+1)(3n+2)

(
1 + q2n+2

) [2n+ 1

n

]
q

[
3n+ 2

n

]
q

.

(17)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 3

k

]
q

(−1)
k
q

k
2 (3k−6n−5)

= (−1)n+1q−
1
2 (n+1)(3n+2)

(
1 + qn+2

) [2n+ 1

n

]
q

[
3n+ 3

n

]
q

.

(18)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q−

1
2 (3k+1)(2−k+2n)

(
1− q2k

)
= (−1)n+1q−

1
2 (n+1)(3n+4)

(
1 + q2n+1

) (
1− q2n+3

) [2n+ 1

n

]
q

[
3n+ 2

n

]
q

.

(19)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 4

k + 2

]
q

(−1)
k
q

k
2 (3k−6n−3)

(
1− qk

)
= (−1)n+1

(
1− q2

)
q−

n
2 (3n+1) 1− q2n+4

1− qn

[
2n+ 1

n− 1

]
q

[
3n+ 3

n

]
q

.

(20)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 4

k + 2

]
q

(−1)
k
q

k
2 (3k−6n−3)

(
1 + qk

)
= (−1)n

(
1 + q2

)
q−

n
2 (3n+1) 1− q2n+4

1− qn

[
2n+ 1

n− 1

]
q

[
3n+ 3

n

]
q

.
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(21)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 4

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−7)

(
1− qk

)3
= (−1)n+1q−

1
2 (n+1)(3n+4)

(
1− q2n+1

) (
1− q2n+3

) (
1− q2n+4

) (
1− qn+1

)
(1− qn)

×
[
2n+ 1

n− 1

]
q

[
3n+ 2

n

]
q

.

(22)

2n+1∑
k=0

[
2n+ 1

k

]
q

[
2n+ 3

k

]2

q

(−1)
k
q

k
2 (3k−6n−9)

(
1− qk

)2
= (−1)n+1 (1− q) q−

1
2 (3(n+1)2+n+1+2)

[
2n+ 3

n+ 1

]
q

[
3n+ 3

n+ 1

]
q

1− qn+2

1 + qn+1
.

(23)

2n+1∑
k=0

[
2n+ 1

k

]
q

[
2n+ 3

k

]2

q

(−1)
k
q

k
2 (3k−6n−7)

= (−1)n+1q−
1
2 (n+1)(3n+4)

[
2n+ 2

n+ 1

]
q

[
3n+ 4

n+ 1

]
q

.

(24)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 5

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−5)

= (−1)n+1q−
1
2 (n+1)(3n+2)

(
1− q2n+5

) (
1− q2n+6

)
(1− qn−1) (1− qn)

[
2n+ 1

n− 2

]
q

[
3n+ 4

n

]
q

.

(25)

2n+1∑
k=0

[
2n+ 1

k

]2

q

[
2n+ 5

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−7)

(
1− qk

)2
= (−1)n

× q− 1
2 (n+1)(3n+4)

(
1− q2n+1

) (
1− q2n+4

) (
1− q2n+5

)
(1− qn)

[
2n+ 1

n− 1

]
q

[
3n+ 3

n

]
q

.

3. Proofs

In this section we choose some of the identities given in the previous Section and
prove them. We prove the identities 1, 14, 13, 15, 3 and 2, respectively.

Proof of identity 1.
First if we replace k → n− k, then we write∑

k

[
2n

n− k

]2

q

[
2n+ 1

n− k

]
q

(−1)kq
k
2 (3k+1) =

[
2n

n

]
q

[
3n+ 1

n

]
q

,



q-DIXON FORMULA AND FIBONOMIAL SUMS 7

which is an equivalent form of identity (1). Another equivalent form is

∑
k

(1− q2n+1)

[
2n

n+ k

]2

q

[
2n+ 1

n+ 1 + k

]
q

(−1)kq
k
2 (3k+1) =

(q)3n+1

(q)3
n

,

and this one we will prove now by two applications of Dixon’s formula. Note
that within the following computations, we sometimes change k ↔ −k in order to

transform the exponent k(3k−1)
2 to k(3k+1)

2 .

∑
k

(1− q2n+1)

[
2n

n+ k

]2

q

[
2n+ 1

n+ 1 + k

]
q

(−1)kq
k
2 (3k+1)

=
∑
k

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

(1− qn+1−k)(−1)kq
k
2 (3k+1)

=
(q)3n+1

(q)2
nqn+1

−
∑
k

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

qn+1−k(−1)kq
k
2 (3k+1)

=
(q)3n+1

(q)2
n(q)n+1

− qn+1
∑
k

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

(−1)kq
k
2 (3k+1)

=
(q)3n+1

(q)2
n(q)n+1

− qn+1 (q)3n+1

(q)2
n(q)n+1

=
(q)3n+1

(q)3
n

.

Proof of identity 14. By taking k → n + 1 − k and after some rearrangements,
then we write

∑
k

(1− q2n+2)

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 2

n+ 1 + k

]2

q

(−1)kq
k
2 (3k−1) =

(q)3n+3

(q)n(q)2
n+1

.

This form is equivalent to identity (5) and will be proved now by two applications
of Dixon’s identity.

∑
k

(1− q2n+2)

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 2

n+ 1 + k

]2

q

(−1)kq
k
2 (3k−1)

=
∑
k

(1− qn+1+k)

[
2n+ 2

n+ 1 + k

]3

q

(−1)kq
k
2 (3k−1)

=
(q)3n+3

(q)3
n+1

− qn+1
∑
k

[
2n+ 2

n+ 1 + k

]3

q

(−1)kq
k
2 (3k+1)

=
(q)3n+3

(q)3
n+1

− qn+1 (q)3n+3

(q)3
n+1

=
(q)3n+3

(q)n(q)2
n+1

.
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Proof of identity 13. By replacing k → n+ 1 +k and rearrangements, we get the
equivalent form∑

k

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

× (−1)kq
k
2 (3k+1)(1− qn+1−k) =

(q)3n+2

(q)2
n(q)n+1

.

It will be proved by two applications of Dixon’s formula:∑
k

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

(−1)kq
k
2 (3k+1)(1− qn+1−k)

=
(q)3n+2

(q)n(q)2
n+1

− qn+1
∑
k

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

(−1)kq
k
2 (3k−1)

=
(q)3n+2

(q)n(q)2
n+1

− qn+1 (q)3n+2

(q)n(q)2
n+1

=
(q)3n+2

(q)2
n(q)n+1

.

Proof of identity 15.
By taking k → n + 1 − k and some rearrangements, the claimed identity takes

the equivalent form∑
k

(1− q2n+2)

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]2

q

(−1)kq
k
2 (3k+1) =

(q)3n+2

(q)2
n(q)n+1

,

which will be proved by Dixon’s formula:∑
k

(1− q2n+2)

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]2

q

(−1)kq
k
2 (3k+1)

=
∑
k

[
2n+ 1

n+ k

]
q

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ 1 + k

]
q

(−1)k(1− qn+1−k)q
k
2 (3k+1)

=
(q)3n+2

(q)n(q)2
n+1

− qn+1
∑
k

[
2n+ 1

n+ k

]
q

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ 1 + k

]
q

(−1)kq
k
2 (3k−1)

=
(q)3n+2

(q)n(q)2
n+1

− qn+1
∑
k

[
2n+ 1

n+ k + 1

]
q

[
2n+ 2

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

(−1)kq
k
2 (3k+1)

=
(q)3n+2

(q)n(q)2
n+1

− qn+1 (q)3n+2

(q)n(q)2
n+1

=
(q)3n+2

(q)2
n(q)n+1

.

Proof of identity 3. This proof is more involved and requires auxiliary quantities
that will be evaluated by several applications of Dixon’s identity. Define

T :=
∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)qk,
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W :=
∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)q2k

and

X :=
∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3).

To complete the proof we should prove that

X −W = 2(−1)nq−
n
2 (3n+1)(1− q2n+1)

[
2n

n

]
q

[
3n

n− 1

]
q

.

First we notice that T is the sum in identity (1), so

T = (−1)nq−
n
2 (3n+1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n
.

Next we compute

V =
∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)(1− qk)2

= (1− q2n)(1− q2n+1)
∑
k

(−1)kq
k
2 (3k−6n−3)

[
2n− 1

k − 1

]
q

[
2n

k

]
q

[
2n

k − 1

]
q

= (1− q2n)(1− q2n+1)
∑
k

(−1)kq
k
2 (3k−6n−3)

[
2n− 1

2n− k

]
q

[
2n

2n− k

]
q

[
2n

2n+ 1− k

]
q

= (1− q2n)(1− q2n+1)
∑
j

(−1)j−1q
j
2 (3j−6n−3)

[
2n− 1

j − 1

]
q

[
2n

j

]
q

[
2n

j − 1

]
q

= −V,

hence V = 0. Therefore we get∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)(1− qk)

=
∑
k

[
2n

k

]2

q

[
2n+ 1

k

]
q

(−1)kq
k
2 (3k−6n−3)(1− qk)qk

and thus

X − T = T −W

and so

X +W = 2T,

which will be used later. Now we compute

W =
∑
k

(−1)kq
k
2 (3k−6n−3)q2k

[
2n

k

]
q

[
2n

k

]
q

[
2n+ 1

k

]
q

= (−1)nq−
n
2 (3n−1)

∑
k

(−1)kq
k
2 (3k+1)

[
2n

n+ k

]
q

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q
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= (−1)nq−
n
2 (3n−1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k+1)(1− qn+1+k)

×
[

2n

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

= (−1)nq−
n
2 (3n−1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k+1)

[
2n

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
n
2 (3n−1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k+1)qn+1+k

[
2n

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

= (−1)nq−
n
2 (3n−1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1

− (−1)nq−
n
2 (3n−1)+ n

2 +1 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k+3)

[
2n

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

[
2n+ 1

n+ k

]
q

and

X =
∑
k

(−1)kq
k
2 (3k−6n−3)

[
2n

k

]
q

[
2n

k

]
q

[
2n+ 1

k

]
q

= (−1)nq−
3
2n(n+1)

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q

= (−1)n
q−

3
2n(n+1)

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)(1− qn+k+1)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

= (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)qn+k+1

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

= (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
1
2 (3n−2)(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−1)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

,

which by k → −k in the second sum, equals

= (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
1
2 (3n−2)(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k+1)

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

= (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
1
2 (3n−2)(n+1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1
.
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Consequently we have the summarized results

W = (−1)nq−
n
2 (3n−1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1

− (−1)nq−
n
2 (3n−1)+n+1 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k

]
q

[
2n+ 1

n+ 1 + k

]
q

and

X = (−1)nq−
3
2n(n+1) 1

1− q2n+1

∑
k

(−1)kq
k
2 (3k−3)

[
2n

n+ k

]
q

[
2n+ 1

n+ k + 1

]
q

[
2n+ 1

n+ k

]
q

− (−1)nq−
1
2 (3n−1)(n+1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1
.

Therefore

q3n+1X +W

= −(−1)nq−
1
2 (3n−2)(n+1)q3n+1 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1

+ (−1)nq−
n
2 (3n−1) 1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1

= (−1)nq−
n
2 (3n−1) 1− q2n+2

1− q2n+1

(q)3n+1

(q)n(q)n(q)n+1
.

We can rewrite this as

q3n+1X +W = T (1 + qn+1)qn.

But we also know that

W +X = 2T.

From these two relations, we can compute X and W and thus X −W as

X = T
1

1− q3n+1

(
2− (1 + qn+1)qn

)
= (−1)nq−

n
2 (3n+1)

(
2− (1 + qn+1)qn

) 1

1− q2n+1

(q)3n

(q)n(q)n(q)n

and

W = 2T −X

= (−1)nq−
n
2 (3n+1)+n(1 + qn+1 − 2q2n+1)

1

1− q3n+1

1

1− q2n+1

(q)3n+1

(q)n(q)n(q)n
,

and so the result

X −W = T
1

1− q3n+1

(
2− (1 + qn+1)qn

)
− T 1

1− q3n+1
qn(1 + qn+1 − 2q2n+1)

= T
1

1− q3n+1

(
(2− (1 + qn+1)qn)− qn(1 + qn+1 − 2q2n+1)

)
= 2T (1− qn)(1− q2n+1)

1

1− q3n+1

= 2(−1)nq−
n
2 (3n+1)(1− qn)(1− q2n+1)

1

1− q2n+1

(q)3n

(q)n(q)n(q)n
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= 2(−1)nq−
n
2 (3n+1) (q)3n

(q)n(q)n(q)n−1
,

as claimed.
Remark. From this proof we know that

X +W = 2T,

which proves the identity 2.
As the last example has shown, the reduction to instances of the q-Dixon identity

can be quite involved. Therefore we present an alternative method, namely the q-
Zeilberger algorithm [7]. We discuss identity 6 as a showcase: Define

Tn :=

2n∑
k=0

[
2n

k

]2

q

[
2n+ 3

k + 1

]
q

(−1)
k
q

k
2 (3k−6n−1).

Zeilberger’s algorithm produces a recursion

anTn + bnTn+1 + cnTn+2 + dnTn+3 = 0,

where an, bn, cn, dn are complicated expressions with about 1000 terms each.
Set

Un := (−1)nq−
n
2 (3n+1) 1− q2n+3

1− qn

[
2n

n− 1

]
q

[
3n+ 2

n

]
q

,

then it can be checked (by a computer) that also

anUn + bnUn+1 + cnUn+2 + dnUn+3 = 0.

After checking a few initial values directly, this proves indeed that Tn = Un for all
nonnegative integers n.

4. Applications to the Fibonomials Sums Identities

In this section, we present corollaries of our previous list of identities, by spe-
cializing the value of q as described in the Introduction. Each identity corresponds
now to two identities which have slightly different forms. By replacing n → 2n,
we get a formula labelled with “e” (even), and by replacing n → 2n + 1, we get a
formula labelled with “o” (odd).

1-e)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 3

k

}
U

(−1)
1
2k(k+1)

= (−1)
n+1

{
4n+ 2

2n+ 1

}
U

{
6n+ 4

2n+ 1

}
U

.

1-o)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 1

k

}
U

(−1)
1
2k(k−1)

= (−1)n
{

4n

2n

}
U

{
6n+ 1

2n

}
U

,

2-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 1

k

}
U

V2k(−1)
1
2k(k+1) = 2(−1)n

{
4n

2n

}
U

{
6n+ 1

2n

}
U

,
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2-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 3

k

}
U

V2k(−1)
1
2k(k−1) = 2(−1)n+1

{
4n+ 2

2n+ 1

}
U

{
6n+ 4

2n+ 1

}
U

.

3-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 1

k

}
U

U2k(−1)
k
2 (k+1) = 2(−1)nU4n+1

{
4n

2n

}
U

{
6n

2n− 1

}
U

,

3-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 3

k

}
U

U2k(−1)
1
2k(k−1)

= 2(−1)n+1U4n+3

{
4n+ 2

2n+ 1

}
U

{
6n+ 3

2n

}
U

.

4-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 2

k

}
U

Uk(−1)
1
2k(k+1) = (−1)n

{
4n

2n+ 1

}
U

{
6n+ 1

2n

}
U

,

4-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 4

k

}
U

Uk (−1)
1
2k(k−1)

= (−1)n+1

{
4n+ 2

2n+ 2

}
U

{
6n+ 4

2n+ 1

}
U

.

5-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k

}
U

(−1)
1
2k(k−1)U2

k

= (−1)n
U4nU4n+3U4n+4

U2n−1

{
4n

2n− 2

}
U

{
6n+ 1

2n− 1

}
U

,

5-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k

}
U

(−1)
1
2k(k+1)U2

k

= (−1)n+1U4n+2U4n+5U4n+6

U2n

{
4n+ 2

2n− 1

}
U

{
6n+ 4

2n

}
U

.

6-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 1

}
U

(−1)
1
2k(k−1)

= (−1)n
U4n+3

U2n

{
4n

2n− 1

}
U

{
6n+ 2

2n

}
U

,

6-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 1

}
U

(−1)
1
2k(k+1) = (−1)n+1U4n+5

U2n+1

{
4n+ 2

2n

}
U

{
6n+ 5

2n+ 1

}
U

.
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7-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 1

}
U

(−1)
1
2k(k−1)U2

2k

= (−1)n∆U4nU4n+1U4n+2U4n+3

{
4n

2n− 1

}
U

{
6n

2n− 1

}
U

,

7-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 1

}
U

(−1)
1
2k(k+1)

U2
2k

= (−1)n+1∆U4n+2U4n+3U4n+4U4n+5

{
4n+ 2

2n

}
U

{
6n+ 3

2n

}
U

.

8-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 1

}
U

(−1)
1
2k(k+1)U2k

= 2(−1)nU4n+3

{
4n

2n− 1

}
U

{
6n+ 1

2n

}
U

,

8-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 1

}
U

(−1)
1
2k(k−1)

U2k

= 2(−1)n+1U4n+5

{
4n+ 2

2n

}
U

{
6n+ 4

2n+ 1

}
U

.

9-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 1

}
U

(−1)
1
2k(k+1)V 2

2k

= 4(−1)n
U4n+3

U2n

{
4n

2n− 1

}
U

{
6n+ 2

2n

}
U

,

9-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 1

}
U

(−1)
1
2k(k−1)

V 2
2k

= 4(−1)n+1U4n+5

U2n+1

{
4n+ 2

2n

}
U

{
6n+ 5

2n+ 1

}
U

.

10-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 2

}
U

(−1)
1
2k(k+1)

= (−1)n
U4n+3

U2n

{
4n

2n− 1

}
U

{
6n+ 2

2n

}
U

,
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10-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 2

}
U

(−1)
1
2k(k−1)

= (−1)n+1U4n+5

U2n+1

{
4n+ 2

2n

}
U

{
6n+ 5

2n+ 1

}
U

.

11-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 3

k + 2

}
U

U2
k (−1)

1
2k(k−1)

= (−1)n
U4nU4n+3U4n+4

U2n−1

{
4n

2n− 2

}
U

{
6n+ 1

2n− 1

}
U

,

11-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 5

k + 2

}
U

U2
k (−1)

1
2k(k+1)

= (−1)n+1U4n+2U4n+5U4n+6

U2n

{
4n+ 2

2n− 1

}
U

{
6n+ 4

2n

}
U

.

12-e)

4n∑
k=0

{
4n

k

}2

U

{
4n+ 4

k + 1

}
U

(−1)
1
2k(k+1)Uk

= (−1)nV1
U4n+4

U2n−1

{
4n

2n− 2

}
U

{
6n+ 2

2n

}
U

,

12-o)

4n+2∑
k=0

{
4n+ 2

k

}2

U

{
4n+ 6

k + 1

}
U

(−1)
1
2k(k−1)

Uk

= (−1)n+1V1
U4n+6

U2n

{
4n+ 2

2n− 1

}
U

{
6n+ 5

2n+ 1

}
U

.

13-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 2

k

}
U

Uk (−1)
1
2k(k−1)

= (−1)nU4n+2

{
4n+ 1

2n

}
U

{
6n+ 2

2n

}
U

,

13-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 4

k

}
U

Uk (−1)
1
2k(k+1)

= (−1)
n+1

U4n+4

{
4n+ 3

2n+ 1

}
U

{
6n+ 5

2n+ 1

}
U

.
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14-e)

4n+1∑
k=0

{
4n+ 1

k

}
U

{
4n+ 2

k

}2

U

(−1)
1
2k(k−1) = (−1)n

{
4n+ 1

2n

}
U

{
6n+ 3

2n+ 1

}
U

,

14-o)

4n+3∑
k=0

{
4n+ 3

k

}
U

{
4n+ 4

k

}2

U

(−1)
1
2k(k+1) = (−1)n+1

{
4n+ 3

2n+ 1

}
U

{
6n+ 6

2n+ 2

}
U

.

15-e)

4n+1∑
k=0

{
4n+ 1

k

}
U

{
4n+ 2

k

}2

U

U2
k (−1)

1
2k(k+1)

= (−1)nU2
4n+2

{
4n+ 1

2n

}
U

{
6n+ 2

2n

}
U

,

15-o)

4n+3∑
k=0

{
4n+ 3

k

}
U

{
4n+ 4

k

}2

U

U2
k (−1)

1
2k(k−1)

= (−1)n+1U2
4n+4

{
4n+ 3

2n+ 1

}
U

{
6n+ 5

2n+ 1

}
U

.

16-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 2

k

}
U

Vk (−1)
1
2k(k+1)

= (−1)nV4n+2

{
4n+ 1

2n

}
U

{
6n+ 2

2n

}
U

,

16-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 4

k

}
U

Vk (−1)
1
2k(k−1)

= (−1)n+1V4n+4

{
4n+ 3

2n+ 1

}
U

{
6n+ 5

2n+ 1

}
U

.

17-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 3

k

}
U

(−1)
1
2k(k+1)

= (−1)nV2n+2

{
4n+ 1

2n

}
U

{
6n+ 3

2n

}
U

,
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17-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 5

k

}
U

(−1)
1
2k(k−1)

= (−1)n+1V2n+3

{
4n+ 3

2n+ 1

}
U

{
6n+ 6

2n+ 1

}
U

.

18-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 3

k + 1

}
U

U2k (−1)
1
2k(k−1)

= (−1)n
√

∆U4n+1U4n+3

{
4n+ 1

2n

}
U

{
6n+ 2

2n

}
U

,

18-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 5

k + 1

}
U

U2k (−1)
1
2k(k+1)

= (−1)n+1
√

∆U4n+3U4n+5

{
4n+ 3

2n+ 1

}
U

{
6n+ 5

2n+ 1

}
U

.

19-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 4

k + 2

}
U

Uk(−1)
1
2k(k+1)

= (−1)nV1
U4n+4

U2n

{
4n+ 1

2n− 1

}
U

{
6n+ 3

2n

}
U

,

19-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 6

k + 2

}
U

Uk(−1)
1
2k(k−1)

= (−1)n+1V1
U4n+6

U2n+1

{
4n+ 3

2n

}
U

{
6n+ 6

2n+ 1

}
U

.

20-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 4

k + 2

}
U

Vk(−1)
1
2k(k+1)

= (−1)nV2
U4n+4

U2n

{
4n+ 1

2n− 1

}
U

{
6n+ 3

2n

}
U

,

20-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 6

k + 2

}
U

Vk(−1)
1
2k(k−1)

= (−1)n+1V2
U4n+6

U2n+1

{
4n+ 3

2n

}
U

{
6n+ 6

2n+ 1

}
U

.
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21-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 4

k + 1

}
U

U3
k (−1)

1
2k(k+1)

=

(−1)n
U4n+1U4n+3U4n+4U2n+1

U2n

{
4n+ 1

2n− 1

}
U

{
6n+ 2

2n

}
U

,

21-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 6

k + 1

}
U

U3
k (−1)

1
2k(k−1)

=

(−1)n+1U4n+3U4n+5U4n+6U2n+2

U2n+1

{
4n+ 3

2n

}
U

{
6n+ 5

2n+ 1

}
U

.

22-e)

4n+1∑
k=0

{
4n+ 1

k

}
U

{
4n+ 3

k

}2

U

U2
k (−1)

1
2k(k−1)

= ∆−1/2(−1)n
U2n+2

U2n+1

{
4n+ 3

2n+ 1

}
U

{
6n+ 3

2n+ 1

}
U

,

22-o)

4n+3∑
k=0

{
4n+ 3

k

}
U

{
4n+ 5

k

}2

U

U2
k (−1)

1
2k(k+1)

= ∆−1/2(−1)n−1U2n+3

U2n+2

{
4n+ 5

2n+ 2

}
U

{
6n+ 6

2n+ 2

}
U

.

23-e)

4n+1∑
k=0

{
4n+ 1

k

}
U

{
4n+ 3

k

}2

U

(−1)
1
2k(k+1) = (−1)n−1

{
4n+ 2

2n+ 1

}
U

{
6n+ 4

2n+ 1

}
U

,

23-o)

4n+3∑
k=0

{
4n+ 3

k

}
U

{
4n+ 5

k

}2

U

(−1)
1
2k(k−1) = (−1)n

{
4n+ 4

2n+ 2

}
U

{
6n+ 7

2n+ 2

}
U

.

24-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 5

k + 1

}
U

(−1)
1
2k(k−1)

= (−1)n
U4n+5U4n+6

U2n−2U2n

{
4n+ 1

2n− 2

}
U

{
6n+ 4

2n

}
U

,
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24-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 7

k + 1

}
U

(−1)
1
2k(k+1)

= (−1)n+1U4n+5U4n+6

U2nU2n+1

{
4n+ 3

2n− 1

}
U

{
6n+ 7

2n+ 1

}
U

.

25-e)

4n+1∑
k=0

{
4n+ 1

k

}2

U

{
4n+ 5

k + 1

}
U

U2
k (−1)

1
2k(k+1)

= (−1)n
U4n+1U4n+4U4n+5

U2n

{
4n+ 1

2n− 1

}
U

{
6n+ 3

2n

}
U

,

25-o)

4n+3∑
k=0

{
4n+ 3

k

}2

U

{
4n+ 7

k + 1

}
U

U2
k (−1)

1
2k(k−1)

= (−1)n−1U4n+3U4n+6U4n+7

U2n+1

{
4n+ 3

2n

}
U

{
6n+ 6

2n+ 1

}
U

,

where ∆ = p2 + 4.
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