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Abstract. We consider certain Fibonomial sums with generalized Fibonacci

and Lucas numbers coefficients and compute them explicitly. Some corollaries

are also presented. The technique is to rewrite everything in terms of a variable
q, and then to use Rothe’s identity from classical q-calculus.

1. Introduction

Define the second order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

For n ≥ k ≥ 1, define the generalized Fibonomial coefficient by{
n

k

}
U

:=
U1U2 . . . Un

(U1U2 . . . Uk) (U1U2 . . . Un−k)

with
{

n
0

}
U

=
{

n
n

}
U

= 1. When p = 1, we obtain the usual Fibonomial coefficient,
denoted by

{
n
k

}
F
.

Our approach will be as follows. We will use the Binet form

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn(1 + qn)

with q = β/α = −α−2, so that α = i/
√

q where α, β =
(
p±

√
p2 + 4

)
/2.

Throughout this paper we will use the following notations: the q-Pochhammer
symbol (x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and the Gaussian q-binomial coef-
ficients [

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

The link between the generalized Fibonomial and Gaussian q-binomial coeffi-
cients is {

n

k

}
U

= αk(n−k)

[
n

k

]
q

with q = −α−2.

We recall that one version of the Cauchy binomial theorem is given by
n∑

k=0

q

(
k+1
2

)[
n

k

]
q

xk =
n∏

k=1

(
1 + xqk

)
,
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and Rothe’s formula [1] is
n∑

k=0

(−1)kq

(
k
2

)[
n

k

]
q

xk = (x; q)n =
n−1∏
k=0

(
1− xqk

)
.

All the identities we will derive hold for general q, and results about generalized
Fibonacci and Lucas numbers come out as corollaries for the special choice of q.
We will frequently denote

{
n
k

}
U

by
{

n
k

}
.

We shall consider some Fibonomial sums with generalized Fibonacci and Lucas
numbers as coefficients, and then we compute these sums by using Rothe’s for-
mula after having converted them into forms involving the Gaussian q-binomial
coefficients. Some special cases of these sums are also given as corollaries.

Throughout this paper, we will present and prove our main result:

Theorem 1. If n and m are both nonnegative or are both negative integers, then
(1)

2n∑
k=0

{
2n

k

}
U(2m−1)k = Pn,m

m∑
k=1

{
2m− 1
2k − 1

}
U(4k−2)n,

(2)
2n+1∑
k=0

{
2n + 1

k

}
U2mk = Pn,m

m∑
k=0

{
2m

2k

}
U(2n+1)2k,

(3)
2n∑

k=0

{
2n

k

}
(−1)k

U(2m−1)k = Pn,m

m−1∑
k=0

{
2m− 1

2k

}
U4kn,

(4)
2n+1∑
k=0

{
2n + 1

k

}
(−1)k

U2mk = −Pn,m

m∑
k=1

{
2m

2k − 1

}
U(2n+1)(2k−1),

where

Pn,m =


n−m∏
k=0

V2k if n ≥ m,

m−n−1∏
k=1

V −1
2k if n < m.

Proof. First suppose that n ≥ m. We rewrite Pn,m in terms of q-binomial coeffi-
cients:

Pn,m =
n−m∏
k=0

V2k =
n−m∏
k=0

(α2k + β2k)

= α(n−m)(n−m+1)
n−m∏
k=0

(1 + q2k) = 2α(n−m)(n−m+1)(−q2; q2)n−m

= 2(−q)−(n−m+1
2 )(−q2; q2)n−m.

This formula holds for n < m as well, with the usual extension of (q; q)n to arbitrary
n.
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Similarly, the first formula takes the following form in terms of q-binomial coef-
ficients:

2n∑
k=0

α(2m−1)k − β(2m−1)k

α− β
αk(2n−k)

[
2n

k

]
q

= 2α(n−m)(n−m+1)(−q2; q2)n−m

×
m∑

k=1

α(4k−2)n − β(4k−2)n

α− β
α(2k−1)(2m−1−2k+1)

[
2m− 1
2k − 1

]
q

,

which is equivalent to

2n∑
k=0

[1− q(2m−1)k]α2(m+n)k−2(k+1
2 )

[
2n

k

]
q

= 2α(n−m)(n−m+1)−2(m+n)(−q2; q2)n−m

×
m∑

k=1

[1− q(4k−2)n]α4k(m+n)−2k(2k−1)

[
2m− 1
2k − 1

]
q

,

and to
2n∑

k=0

[1− q(2m−1)k](−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= 2(−q)−(n−m+1
2 )+(m+n)(−q2; q2)n−m

×
m∑

k=1

[1− q(4k−2)n](−1)kq−2k(m+n)+k(2k−1)

[
2m− 1
2k − 1

]
q

.

If we denote the left and right hand sides of this equation by L and R, respectively,
then L is the sum of the following two parts:

L1 =
2n∑

k=0

(−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

=
2n∑

k=0

(−1)−(m+n− 1
2 )k+ k2

2 q−(m+n−1)k+(k
2)

[
2n

k

]
q

=
2n∑

k=0

(−1)−(m+n− 1
2 )kq−(m+n−1)k+(k

2)
[
2n

k

]
q

[1 + i
2

+
1− i

2
(−1)k

]
=

1 + i
2

2n∑
k=0

(−1)−(m+n− 1
2 )kq−(m+n−1)k+(k

2)
[
2n

k

]
q

+
1− i

2

2n∑
k=0

(−1)−(m+n+ 1
2 )kq−(m+n−1)k+(k

2)
[
2n

k

]
q

=
1 + i

2
(i(−q)−(m+n−1); q)2n +

1− i
2

(−i(−q)−(m+n−1); q)2n
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and

L2 = −
2n∑

k=0

q(2m−1)k(−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= −
2n∑

k=0

(−1)(m−n+ 1
2 )k+ k2

2 q(m−n)k+(k
2)

[
2n

k

]
q

= −
2n∑

k=0

(−1)(m−n+ 1
2 )kq(m−n)k+(k

2)
[
2n

k

]
q

[1 + i
2

+
1− i

2
(−1)k

]
= −1 + i

2

2n∑
k=0

(−1)(m−n+ 1
2 )kq(m−n)k+(k

2)
[
2n

k

]
q

− 1− i
2

2n∑
k=0

(−1)(m−n− 1
2 )kq(m−n)k+(k

2)
[
2n

k

]
q

= −1 + i
2

(−i(−q)m−n; q)2n −
1− i

2
(i(−q)m−n; q)2n.

By combining the two parts above we write L as

1 + i
2

(i(−q)−(m+n−1); q)2n +
1− i

2
(−i(−q)−(m+n−1); q)2n

− 1 + i
2

(−i(−q)m−n; q)2n −
1− i

2
(i(−q)m−n; q)2n

= La + Lb + Lc + Ld.

Let

R1 =
m∑

k=1

[1− q(4k−2)n](−1)kq−2k(m+n)+k(2k−1)

[
2m− 1
2k − 1

]
q

= iq−(m+n)
2m−1∑
k=0

[1− q2kn]ikq−k(m+n−1)+(k
2)

[
2m− 1

k

]
q

1− (−1)k

2

=
1
2
iq−(m+n)

2m−1∑
k=0

[1− q2kn]ikq−k(m+n−1)+(k
2)

[
2m− 1

k

]
q

− 1
2
iq−(m+n)

2m−1∑
k=0

[1− q2kn](−i)kq−k(m+n−1)+(k
2)

[
2m− 1

k

]
q

=
1
2
iq−(m+n)(−iq−m−n+1; q)2m−1 −

1
2
iq−(m+n)(−iq−m+n+1; q)2m−1

− 1
2
iq−(m+n)(iq−m−n+1; q)2m−1 +

1
2
iq−(m+n)(iq−m+n+1; q)2m−1.

In order to form the right hand side R, the last expression must be multiplied by

2(−q)−(n−m+1
2 )+(m+n)(−q2; q2)n−m.
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Thus R takes the form:

R = i(−q)−(n−m+1
2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1

− i(−q)−(n−m+1
2 )(−q2; q2)n−m(−iq−m+n+1; q)2m−1

− i(−q)−(n−m+1
2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1

+ i(−q)−(n−m+1
2 )(−q2; q2)n−m(iq−m+n+1; q)2m−1

= Ra + Rb + Rc + Rd.

We will show that for m ≡ n (mod 2),

La = Ra, Lb = Rc, Lc = Rb, Ld = Rd,

and for m 6≡ n (mod 2),

La = Rc, Lb = Ra, Lc = Rd, Ld = Rb.

We start with the instance m ≡ n (mod 2), and first show that La = Ra. If we
rearrange both sides of it, the claimed equality becomes

1 + i
2

(i(−q)−(m+n−1); q)2n = i(−q)−(n−m+1
2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1,

or
1 + i

2
(−iq−m−n+1; q)2n = i(−q)−(n−m+1

2 )(−q2; q2)n−m(−iq−m−n+1; q)2m−1,

or
1 + i

2
(−iqm−n; q)2n−2m+1 = i(−q)−(n−m+1

2 )(−q2; q2)n−m.

In order to show the last equality, we consider two cases. For even N , by rearranging
both sides of it we get

1 + i
2

(−iq−N ; q)2N+1 = i(−q)−(N+1
2 )(−q2; q2)N

or
1 + i

2

2N∏
k=0

(1 + iq−N+k) = i(−q)−(N+1
2 )(−q2; q2)N

or
1 + i

2

N∏
k=1

(1 + iq−k)
N∏

k=1

(1 + iqk)(1 + i) = i(−q)−(N+1
2 )(−q2; q2)N

or
N∏

k=1

(1 + iq−k)
N∏

k=1

(1 + iqk) = (−q)−(N+1
2 )(−q2; q2)N

or
N∏

k=1

i(q−k + qk) = (−q)−(N+1
2 )(−q2; q2)N

or

iNq−(N+1
2 )

N∏
k=1

(1 + q2k) = (−q)−(N+1
2 )(−q2; q2)N

or
iN = (−1)N/2 = (−1)−(N+1) N

2 ,

as claimed.
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Now we prove the second claim Lb = Rc. By rearranging both sides of it, we get
1− i

2
(−i(−q)−(m+n−1); q)2n = −i(−q)−(n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1− i

2
(iq−m−n+1; q)2n = −i(−q)−(n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1,

or
1− i

2
(iqm−n; q)2n−2m+1 = −i(−q)−(n−m+1

2 )(−q2; q2)n−m,

or
1− i

2

2n−2m∏
k=0

(1− iqm−n+k) = −i(−q)−(n−m+1
2 )(−q2; q2)n−m,

or

1− i
2

n−m∏
k=1

(1− iq−k)(1− iqk) · (1− i) = −i(−q)−(n−m+1
2 )(−q2; q2)n−m,

or

(−i)n−m
n−m∏
k=1

q−k(1 + q2k) = (−q)−(n−m+1
2 )(−q2; q2)n−m,

which becomes
in−m = (−1)−(n−m+1

2 ),
as claimed.

We note that the other cases (for m ≡ n (mod 2)) can be done similarly.
Now we consider the case La = Rc if m 6≡ n (mod 2). By simplifying both sides

of the claimed equality step by step, we get
1 + i

2
(i(−q)−(m+n−1); q)2n = −i(−q)−(n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1

or
1 + i

2
(iq−m−n+1; q)2n = −i(−q)−(n−m+1

2 )(−q2; q2)n−m(iq−m−n+1; q)2m−1

or
1 + i

2
(iqm−n; q)2n−2m+1 = −i(−q)−(n−m+1

2 )(−q2; q2)n−m

or
1 + i

2

2n−2m∏
k=0

(1− iqm−n+k) = −i(−q)−(n−m+1
2 )(−q2; q2)n−m

or
1 + i

2

n−m∏
k=1

(1− iq−k)(1− iqk) · (1− i) = −i(−q)−(n−m+1
2 )(−q2; q2)n−m

or

in−m
n−m∏
k=1

q−k(1 + q2k) = i(−q)−(n−m+1
2 )(−q2; q2)n−m

or
in−m = i(−1)−(n−m+1

2 ),
which is true as claimed.

The other cases (for m 6≡ n (mod 2)) can be done similarly.
The arguments hold for n < m as well.
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The rest of claimed identities can be proved in the same style, with only minor
variations.

Theorem 2. If n and m are both nonnegative or are both negative integers, then

(1)
2n∑

k=0

{
2n

k

}
V(2m−1)k = Pn,m

m∑
k=1

{
2m− 1
2k − 1

}
V(4k−2)n,

(2)
2n+1∑
k=0

{
2n + 1

k

}
V2mk = Pn,m

m∑
k=0

{
2m

2k

}
V(2n+1)2k,

(3)
2n∑

k=0

{
2n

k

}
(−1)k

V(2m−1)k = Pn,m

m−1∑
k=0

{
2m− 1

2k

}
V4kn,

(4)

2n+1∑
k=0

{
2n + 1

k

}
(−1)k

V2mk = −Pn,m

m∑
k=1

{
2m

2k − 1

}
V(2n+1)(2k−1),

where Pn,m is defined as before.

Proof. The proofs of the claimed identities can be done similarly to the proof of
Theorem 1.

For example, when m = n in Theorem 1, we have the following identities:

(1)
2n∑

k=0

{
2n

k

}
U(2n−1)k = 2

n∑
k=1

{
2n− 1
2k − 1

}
U(4k−2)n,

(2)
2n+1∑
k=0

{
2n + 1

k

}
U2nk = 2

n∑
k=0

{
2n

2k

}
U(2n+1)2k,

(3)
2n∑

k=0

{
2n

k

}
(−1)k

U(2n−1)k = 2
n−1∑
k=0

{
2n− 1

2k

}
U4kn,

(4)

2n+1∑
k=0

{
2n + 1

k

}
(−1)k

U2nk = −2
n∑

k=1

{
2n

2k − 1

}
U(2n+1)(2k−1).

For the reader’s convenience, here is the complete list of q-binomial versions of
the identities given in Theorem 1 and Theorem 2: Let n and m be both nonnegative
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or both negative integers,

2n∑
k=0

[1− q(2m−1)k](−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= Pn,m

m∑
k=1

[1− q(4k−2)n](−q)−(2k−1)(m+n−k)

[
2m− 1
2k − 1

]
q

,

2n+1∑
k=0

[1− q2mk](−q)−(m+n)k+(k
2)

[
2n + 1

k

]
q

= Pn,m

m∑
k=0

[1− q2k(2n+1)](−q)k(2k−2m−2n−1)

[
2m

2k

]
q

,

2n∑
k=0

(−1)k[1− q(2m−1)k](−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= Pn,m

m−1∑
k=0

[1− q4kn](−q)k(2k−2m−2n+1)

[
2m− 1

2k

]
q

,

2n+1∑
k=0

(−1)k[1− q2mk](−q)−(m+n)k+(k
2)

[
2n + 1

k

]
q

= −Pn,m

m∑
k=1

[1− q(2k−1)(2n+1)](−q)(2k−1)(k−m−n−1)

[
2m

2k − 1

]
q

,

2n∑
k=0

[1 + q(2m−1)k](−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= Pn,m

m∑
k=1

[1 + q(4k−2)n](−q)−(2k−1)(m+n−k)

[
2m− 1
2k − 1

]
q

,

2n+1∑
k=0

[1 + q2mk](−q)−(m+n)k+(k
2)

[
2n + 1

k

]
q

= Pn,m

m∑
k=0

[1 + q2k(2n+1)](−q)k(2k−2m−2n−1)

[
2m

2k

]
q

,

2n∑
k=0

(−1)k[1 + q(2m−1)k](−q)−(m+n)k+(k+1
2 )

[
2n

k

]
q

= Pn,m

m−1∑
k=0

[1 + q4kn](−q)k(2k−2m−2n+1)

[
2m− 1

2k

]
q

,
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2n+1∑
k=0

(−1)k[1 + q2mk](−q)−(m+n)k+(k
2)

[
2n + 1

k

]
q

= −Pn,m

m∑
k=1

[1 + q(2k−1)(2n+1)](−q)(2k−1)(k−m−n−1)

[
2m

2k − 1

]
q

,

where

Pn,m =

{
2(−q)−(n−m+1

2 )(−q2; q2)n−m if n ≥ m,

(−q)(
m−n

2 )(−q2; q2)−1
m−n−1 if n < m.

Remark. It is not necessary to split the definition of Pn,m, as the first alternative
would work in both cases, but it is more convenient as given.
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