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Abstract

For sequences defined in terms of 2-adic valuations, we exploit the intrinsic periodic
behaviour obtained by a double summation. The tool is the Mellin-Perron formula.

1. Introduction

In [2], Sun and Moll studied various 2-adic valuations related to a certain integral.

The purpose of this note is to illustrate this somewhat, by relating them to periodic

oscillations that are common when studying the sum of digits function.

The 2-adic valuation ν2(n) is the largest power of 2 that divides n, and satisfies

the recursion formula ν2(2n+ 1) = 0, ν2(2n) = 1 + ν2(n).

It is known (see, e. g., [1]), that S2(n) = n −
∑

0≤k≤n ν2(k), where S2(n) is

the sum of digits (=ones) in the binary representation of n. This function itself is

still quite erratic, but the summatory function
∑

k<n S2(k) is nice and smooth, and

possesses a representation as 1
2
n log2 n+ nδ(log2 n), with a periodic function δ(x).

We refer for all this to [1] and the references provided therein.

Let us start with the simplest example from [2]:

f3(m) =











7 + ν2(
m+1

2
) if m ≡ 1 mod 2,

9 + ν2(
m
4

) if m ≡ 0 mod 4,

9 + ν2(
m+2

4
) if m ≡ 2 mod 4.

So we expect that a double summation over f3(m) will result in attractive results.

This and another example from [2] will be considered in the sequel.

1The author is supported by an incentive grant from the NRF (South Africa).
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2. Mellin-Perron approach

A double summation can be expressed as a single sum via

∑

1≤k<n

f3(k)(n− k) = n
∑

1≤k<n

f3(k)
(

1 −
k

n

)

.

The Mellin-Perron approach, as developed in [1], provides an integral representation

for it:

∑

1≤k<n

f3(k)
(

1 −
k

n

)

=
1

2πi

c+i∞
∫

c−i∞

F3(s)n
s ds

s(s+ 1)
,

where

F3(s) =
∑

n≥1

f3(n)

ns

is the generating Dirichlet series, and c is any real number large enough, so that

the series converges.

F3(s) =
∑

n≥1

f3(n)

ns

=
∑

n≥0

7 + ν2(n+ 1)

(2n+ 1)s
+

∑

n≥1

9 + ν2(n)

(4n)s
+

∑

n≥0

9 + ν2(n+ 1)

(4n+ 2)s

= 9ζ(s) − 2
∑

n≥0

1

(2n+ 1)s
+

∑

n≥0

ν2(n+ 1)

(2n+ 1)s
+

∑

n≥1

ν2(n)

(4n)s
+

∑

n≥0

ν2(n+ 1)

(4n+ 2)s

= 9ζ(s) − 2ζ(s) + 21−sζ(s) + (1 + 2−s)
∑

n≥0

ν2(n+ 1)

(2n+ 1)s
+ 4−s

∑

n≥1

ν2(n)

ns
.

Now we compute (as many people did before)

∑

n≥1

ν2(n)

ns
=

∑

n≥1

1 + ν2(n)

(2n)s
.

So
∑

n≥1

ν2(n)

ns
=

2−sζ(s)

1 − 2−s
.
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The remaining sum we treat like this:

∑

n≥1

ν2(n)

(2n− 1)s
=

∑

n≥1

ν2(n)

(2n)s

(

1 −
1

2n

)−s

=
∑

k≥0

(

s+ k − 1

k

)

∑

n≥1

ν2(n)

(2n)s+k

=
∑

k≥0

(

s+ k − 1

k

)

1

2s+k(2s+k − 1)
ζ(s+ k).

Summarizing:

F3(s) = 7ζ(s) + 21−sζ(s) +
8−sζ(s)

1 − 2−s

+ (1 + 2−s)
∑

k≥0

(

s+ k − 1

k

)

1

2s+k(2s+k − 1)
ζ(s+ k).

The classic procedure is now to shift the line of integration to the left and collect

residues. Because of the presence of the zeta function, we cannot shift the line too

far; and because of the functions ζ(s + k), we cannot hope for an exact formula,

but only for an asymptotic one. More details about this procedure are to be found

in the article [1].

We must collect the residues of

F3(s)
ns

s(s+ 1)

at s = 1 and at s = 0. Fortunately, this can be done by a computer, and we have

collected so far:
9n

2
−

3

2
log2 n−

7

4
−

3

2
log2 π +

3

2 log 2
.

But there are also poles at s = χk = 2πik
log 2

, with residues

3ζ(χk)

log 2 · χk(χk + 1)
e2πik·log

2
n.

Traditionally, one collects them into a periodic function:

φ(x) =
3

log 2

∑

k 6=0

ζ(χk)

χk(χk + 1)
e2πikx.

Multiplying all the contributions by n, we found an asymptotic expansion for the

doubly iterated sum. The remainder term stems from the fact that we shift the line

of integration to <s = −
1
4
, as in [1].
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Theorem 1

∑

1≤k<n

f3(k)(n− k) =
9n2

2
−

3n

2
log2 n−

3n

2
log2 π

−
7n

4
+

3n

2 log 2
+ nφ(log2 n) +O(n3/4).

–0.4

–0.3

–0.2

–0.1

0

0.1

1000 2000 3000 4000 5000

Figure 1: 1
n

∑

1≤k<n f3(k)(n− k) − 9n
2

+ 3
2

log2 n+ 7
4

+ 3
2

log2 π −
3

2 log 2

Now let us move to the next example from [2]:

f5(m) =































14 + ν2(
m+2

4
) if m ≡ 2 mod 4,

13 + ν2(
m+1

4
) if m ≡ 3 mod 4,

13 + ν2(
m+3

4
) if m ≡ 1 mod 4,

16 + ν2(
m
8

) if m ≡ 0 mod 8,

16 + ν2(
m+4

8
) if m ≡ 4 mod 8.

As before, we compute the generating Dirichlet series:

∑

n≥1

f5(n)

ns
= 16ζ(s) +

∑

n≥0

−2 + ν2(n+ 1)

(4n+ 2)s
+

∑

n≥0

−3 + ν2(n+ 1)

(4n+ 3)s

+
∑

n≥0

−3 + ν2(n+ 1)

(4n+ 1)s
+

∑

n≥1

ν2(n)

(8n)s
+

∑

n≥0

ν2(n+ 1)

(8n+ 4)s
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Figure 2: The periodic function φ(log2 n), drawn from the first 200 Fourier coeffi-
cients.

= 16ζ(s) − 3ζ(s) + 2 4−sζ(s) + 2−sζ(s) +
∑

n≥1

ν2(n)

(4n− 2)s
+

∑

n≥1

ν2(n)

(4n− 1)s

+
∑

n≥1

ν2(n)

(4n− 3)s
+ 8−s

∑

n≥1

ν2(n)

ns
+

∑

n≥1

ν2(n)

(8n− 4)s

= 13ζ(s) + 2 4−sζ(s) + 2−sζ(s) + (2−s + 4−s)
∑

n≥1

ν2(n)

(2n− 1)s

+
∑

n≥1

ν2(n)

(4n− 1)s
+

∑

n≥1

ν2(n)

(4n− 3)s
+

16−s

1 − 2−s
ζ(s)

= 13ζ(s) + 2 4−sζ(s) + 2−sζ(s) +
16−s

1 − 2−s
ζ(s)

+ (2−s + 4−s)
∑

k≥0

(

s+ k − 1

k

)

1

2s+k(2s+k − 1)
ζ(s+ k)

+
∑

k≥0

(

s+ k − 1

k

)

1 + 3k

4s+k(2s+k − 1)
ζ(s+ k).



INTEGERS: 10 (2010) 6

The collected residues of
F5(s)n

s

s(s+ 1)
at s = 1 and s = 0 are:

15n

2
−

5

2
log2 n−

5

2
log2 π −

5

4
+

5

2 log 2
.

Theorem 2

∑

1≤k<n

f5(k)(n− k) =
15n2

2
−

5n

2
log2 n−

5n

2
log2 π

−
5n

4
+

5n

2 log 2
+ nψ(log2 n) +O(n3/4).

Other examples, related to f7(m), f9(m), . . . , can be treated in the same style,

but the generating Dirichlet series become more cumbersome.
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