A GENERALIZATION OF A CONJECTURE OF MELHAM

EMRAH KILIC ${ }^{1}$, ILKER AKKUS ${ }^{2}$, AND HELMUT PRODINGER ${ }^{3}$

Abstract

A generalization of one of Melham's conjectures is presented. After writing it in terms of Gaussian q-binomial coefficients, a solution is found using the elementary technique of partial fraction decomposition.

1. Introduction

The Fibonomial coefficient is, for $n \geq m \geq 1$, defined by

$$
\left\{\begin{array}{c}
n \\
m
\end{array}\right\}:=\frac{F_{1} F_{2} \ldots F_{n}}{\left(F_{1} F_{2} \ldots F_{n-m}\right)\left(F_{1} F_{2} \ldots F_{m}\right)}
$$

with $\left\{\begin{array}{l}n \\ n\end{array}\right\}=\left\{\begin{array}{l}n \\ 0\end{array}\right\}=1$ where F_{n} is the nth Fibonacci number .
For a detailed discussion of the Fibonomial coefficients, we refer to the list of references in [2].

The Gaussian q-binomial coefficient $\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$ is defined, for all real n and integers m with $m \geq 0$, by

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}:=\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}}
$$

and as zero otherwise, where

$$
(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right) .
$$

Thus, $\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$ is a rational function of the parameter q. For more details, see [1].
Let

$$
\alpha=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{5}}{2} .
$$

Then the well known Binet forms give

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, \quad L_{n}=\alpha^{n}+\beta^{n}
$$

and thus

$$
F_{n}=\alpha^{n-1} \frac{1-q^{n}}{1-q}, \quad L_{n}=\alpha^{n}\left(1+q^{n}\right)
$$

with $q=\beta / \alpha=-\alpha^{-2}$, so that $\mathbf{i}=\alpha \sqrt{q}$, where F_{n} is the nth Fibonacci number and L_{n} is the nth Lucas number. All the identities we are going to derive hold for

[^0]general q, and results about Fibonacci and Lucas numbers come out as corollaries for the special choice of q.

The link between the Fibonomial and Gaussian q-binomial coefficients is

$$
\left\{\begin{array}{l}
n \\
m
\end{array}\right\}=\alpha^{m(n-m)}\left[\begin{array}{l}
n \\
m
\end{array}\right]_{q} \text { with } \quad q=-\alpha^{-2} .
$$

Melham [3] derived some families of identities between sums of powers of the Fibonacci and Lucas numbers. He also conjectured a complex identity by using a "falling" Fibonacci factorial $\left(F_{n}\right)_{(m)}$, which begins at F_{n} for $n \neq 0$, and is the product of m Fibonacci numbers excluding F_{0}. His conjecture is in two parts: Let $m, n, k \in \mathbb{Z}$ with $m \geq 1$. Then:
(a)

$$
\begin{gathered}
\sum_{j=0}^{m-1} \frac{F_{n+k+m-j}^{m+1}}{\left(F_{m-j-1}\right)_{(m-1)} F_{(m+1) k+m-j}}+(-1)^{\frac{m(m-1)}{2}} \frac{F_{n-m k}^{m+1}}{\prod_{j=1}^{m} F_{(m+1) k+j}} \\
=F_{(m+1)\left(n+\frac{m}{2}\right)}
\end{gathered}
$$

(b) The Lucas counterpart of (a),

$$
\begin{aligned}
\sum_{j=0}^{m-1} \frac{L_{n+k+m-j}^{m+1}}{\left(F_{m-j-1}\right)_{(m-1)} F_{(m+1) k+m-j}} & +(-1)^{\frac{m(m-1)}{2}} \frac{L_{n-m k}^{m+1}}{\prod_{j=1}^{m} F_{(m+1) k+j}} \\
& = \begin{cases}5^{\frac{m+1}{2}} F_{(m+1)\left(n+\frac{m}{2}\right)} & \text { if } m \text { is odd, } \\
5^{\frac{m}{2}} L_{(m+1)\left(n+\frac{m}{2}\right)} & \text { if } m \text { is even. }\end{cases}
\end{aligned}
$$

In [2], we rearranged the conjectures (a) and (b) by using Fibonomials and then gave a solution of the conjecture by translating it into a q-expression: we were left with the evaluation of a certain sum. This was achieved using contour integration.

The present paper is organized as follows: (i) We generalize the conjecture of Melham by using indices in arithmetic progression for both, the Fibonacci and the Lucas instance. (ii) Then we give a solution for this general formula by a partial fraction decomposition method that is even simpler than the contour integration given in [2] (although it is essentially equivalent).

2. A generalization of Melham's Conjecture

In this section, we give a generalization of the Fibonomial coefficients in order to state a general version of the conjecture of Melham.

Definition 1. For all integers n, m, r with $m, r \geq 1$, the r-Fibonomial is defined as

$$
\left\{\begin{array}{l}
n \\
m
\end{array}\right\}_{r}:=\frac{F_{n} F_{n-r} \ldots F_{n-r(m-1)}}{F_{r} F_{2 r} \ldots F_{m r}}
$$

with $\left\{\begin{array}{l}n \\ 0\end{array}\right\}_{r}=1$ where F_{n} is the nth Fibonacci number.
Now we give a generalization of the conjecture of Melham in terms of r-Fibonomials:
Theorem 1. For any integers m, n and k :
(i) If r odd, then

$$
\begin{gathered}
\sum_{j=0}^{m-1}(-1)^{\frac{j(j-1)}{2}}\left\{\begin{array}{c}
(m+1) k+m r \\
j
\end{array}\right\}_{r}\left\{\begin{array}{c}
(m+1) k+r(m-j-1) \\
m-j-1
\end{array}\right\}_{r} F_{n+k+r(m-j)}^{m+1} \\
+(-1)^{\frac{m(m-1)}{2}} F_{n-m k}^{m+1}=\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) F_{(m+1)\left(n+\frac{r m}{2}\right)}
\end{gathered}
$$

(ii) If r even, then

$$
\begin{array}{r}
\sum_{j=0}^{m-1}(-1)^{j}\left\{\begin{array}{c}
(m+1) k+m r \\
j
\end{array}\right\}_{r}\left\{\begin{array}{c}
(m+1) k+r(m-j-1) \\
m-j-1
\end{array}\right\}_{r} F_{n+k+r(m-j)}^{m+1} \\
+(-1)^{m} F_{n-m k}^{m+1}=\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) F_{(m+1)\left(n+\frac{r m}{2}\right)}
\end{array}
$$

(iii) The Lucas counterpart of (i),

$$
\begin{aligned}
& \sum_{j=0}^{m-1}(-1)^{\frac{j(j-1)}{2}}\left\{\begin{array}{c}
(m+1) k+m r \\
j
\end{array}\right\}_{r}\left\{\begin{array}{c}
(m+1) k+r(m-j-1) \\
m-j-1
\end{array}\right\}_{r} \times 1 \\
& L_{n+k+r(m-j)}^{m+1}+(-1)^{\frac{m(m-1)}{2}} L_{n-m k}^{m+1}
\end{aligned} \begin{aligned}
& 5^{\frac{m+1}{2}}\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) F_{(m+1)\left(n+\frac{r m}{2}\right)} \text { if } m \text { is odd, } \\
& 5^{\frac{m}{2}}\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) L_{(m+1)\left(n+\frac{r m}{2}\right)} \\
& \text { if } m \text { is even. } .
\end{aligned}
$$

(iv) The Lucas counterpart of (ii),

$$
\begin{aligned}
& \sum_{j=0}^{m-1}(-1)^{j}\left\{\begin{array}{c}
(m+1) k+m r \\
j
\end{array}\right\}_{r}\left\{\begin{array}{c}
(m+1) k+r(m-j-1) \\
m-j-1
\end{array}\right\}_{r} L_{n+k+r(m-j)}^{m+1} \\
& +(-1)^{m} L_{n-m k}^{m+1}= \begin{cases}5^{\frac{m+1}{2}}\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) F_{(m+1)\left(n+\frac{r m}{2}\right)} & \text { if } m \text { is odd } \\
5^{\frac{m}{2}}\left(\prod_{j=1}^{m} F_{(m+1) k+r j}\right) L_{(m+1)\left(n+\frac{r m}{2}\right)} & \text { if } m \text { is even. }\end{cases}
\end{aligned}
$$

Proof. We want to point out that rewriting (i)-(iv) in terms of q-binomials produces the same expression for (i) and (ii) and also for (iii) and (iv). We can combine all the cases (i)-(iv) in one formula as follows:

$$
\begin{align*}
& \left(1-q^{(m+1) k+r m}\right) \frac{\left(q^{(m+1) k+r} ; q^{r}\right)_{m-1}}{\left(q^{r} ; q^{r}\right)_{m-1}} \times \\
& \quad \sum_{j=0}^{m-1}(-1)^{j} q^{\frac{r j(j+1)}{2}}\left[\begin{array}{c}
m-1 \\
j
\end{array}\right]_{q^{r}} \frac{\left(1+(-1)^{h} q^{n+k+r(m-j)}\right)^{m+1}}{1-q^{(m+1) k+r(m-j)}} \\
& =\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
& \quad-(-1)^{m} q^{\frac{m(m+1)(2 k+r)}{2}}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} . \tag{2.1}
\end{align*}
$$

Here, $h=1$ in (2.1) gives us the q-notation of the cases (i), (ii) and similarly $h=0$ in (2.1) gives the cases (iii) and (iv). For the proof, let us consider

$$
X:=\frac{1}{(1-z)\left(1-z q^{r}\right) \ldots\left(1-z q^{r(m-1)}\right)} \frac{\left(1+(-1)^{h} z q^{n+k+r m}\right)^{m+1}}{z\left(1-z q^{(m+1) k+r m}\right)}
$$

Performing partial fraction decomposition, we get:

$$
\begin{aligned}
X & =\sum_{j=0}^{m-1} \frac{(-1)^{j} q^{r\binom{(+1}{2}}}{\left(q^{r} ; q^{r}\right)_{j}\left(q^{r} ; q^{r}\right)_{m-1-j}} \frac{\left(1+(-1)^{h} q^{n+k+r m-r j}\right)^{m+1}}{1-q^{(m+1) k+r m-r j}} \frac{1}{q^{-r j}\left(1-z q^{r j}\right)} \\
& +\frac{C}{1-z q^{(m+1) k+r m}}+\frac{1}{z}
\end{aligned}
$$

with

$$
C=\left.\frac{\left(1+(-1)^{h} z q^{n+k+r m}\right)^{m+1}}{z(1-z)\left(1-z q^{r}\right) \ldots\left(1-z q^{r(m-1)}\right)}\right|_{z=q^{-(m+1) k-r m}}
$$

We note that the degree of numerator and denominator is $m+1$. As $z \rightarrow \infty$,

$$
X \sim \frac{B}{z}+O\left(z^{-2}\right)
$$

with

$$
B=\frac{(-1)^{m}}{q^{r\binom{m}{2}}} \frac{\left((-1)^{h} q^{n+k+r m}\right)^{m+1}}{-q^{(m+1) k+r m}}=(-1)^{(h+1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}} .
$$

Furthermore,

$$
\begin{aligned}
z X=\sum_{j=0}^{m-1} \frac{(-1)^{j} q^{r\binom{(+1}{2}}}{\left(q^{r} ; q^{r}\right)_{j}\left(q^{r} ; q^{r}\right)_{m-1-j}} & \frac{\left(1+(-1)^{h} q^{n+k+r m-r j}\right)^{m+1}}{1-q^{(m+1) k+r m-r j}} \times \\
& \frac{z}{q^{-r j}\left(1-z q^{r j}\right)}+\frac{C z}{1-z q^{(m+1) k+r m}}+1,
\end{aligned}
$$

and letting z approach ∞ :

$$
\begin{aligned}
&\left.B=\sum_{j=0}^{m-1} \frac{(-1)^{j-1} q^{r\left({ }^{(j+1} 2\right.} 2}{2}\right) \\
&\left(q^{r} ; q^{r}\right)_{j}\left(q^{r} ; q^{r}\right)_{m-1-j} \frac{\left(1+(-1)^{h} q^{n+k+r m-r j}\right)^{m+1}}{1-q^{(m+1) k+r m-r j}} \\
&-\frac{C}{q^{(m+1) k+r m}}+1
\end{aligned}
$$

Thus, we get:

$$
\begin{aligned}
& (-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{r} ; q^{r}\right)_{m-1} \\
& =\sum_{j=0}^{m-1}(-1)^{j-1} q^{r\binom{j+1}{2}}\left[\begin{array}{c}
m-1 \\
j
\end{array}\right]_{q^{r}} \frac{\left(1+(-1)^{h} q^{n+k+r(m-j)}\right)^{m+1}}{1-q^{(m+1) k+r(m-j)}} \\
& \quad-C \cdot \frac{\left(q^{r} ; q^{r}\right)_{m-1}}{q^{(m+1) k+r m}}+\left(q^{r} ; q^{r}\right)_{m-1},
\end{aligned}
$$

or

$$
\begin{align*}
& \sum_{j=0}^{m-1}(-1)^{j} q^{r\binom{j+1}{2}}\left[\begin{array}{c}
m-1 \\
j
\end{array}\right]_{q^{r}} \frac{\left(1+(-1)^{h} q^{n+k+r(m-j)}\right)^{m+1}}{1-q^{(m+1) k+r(m-j)}} \\
& =-C \cdot \frac{\left(q^{r} ; q^{r}\right)_{m-1}}{q^{(m+1) k+r m}}+\left(q^{r} ; q^{r}\right)_{m-1}-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{r} ; q^{r}\right)_{m-1} \tag{2.2}
\end{align*}
$$

Now we work out the constant C :

$$
\begin{align*}
C & =\frac{1}{q^{-(m+1) k-r m}} \times \\
& \frac{\left(1+(-1)^{h} q^{n-m k}\right)^{m+1}}{\left(1-q^{-(m+1) k-r m}\right)\left(1-q^{-(m+1) k-r m} q^{r}\right) \ldots\left(1-q^{-(m+1) k-r m} q^{r(m-1)}\right)} \\
& =\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{((m+1) k+r m) m-r\binom{m}{2}}}{q^{-(m+1) k-r m}\left(1-q^{(m+1) k+r m}\right)\left(1-q^{(m+1) k+r m-r}\right) \ldots\left(1-q^{(m+1) k+r}\right)} \\
& =\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{((m+1) k+r m)(m+1)-r\binom{m}{2}}}{\left(1-q^{(m+1) k+r m}\right)\left(1-q^{(m+1) k+r m-r}\right) \ldots\left(1-q^{(m+1) k+r}\right)} \\
& =\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1)^{2} k+r m(m+1)-r\binom{m}{2}}}{\left(q^{(m+1) k+r} ; q^{r}\right)_{m}} . \tag{2.3}
\end{align*}
$$

Using (2.2) and (2.3), we obtain

$$
\begin{aligned}
& \sum_{j=0}^{m-1}(-1)^{j} q^{r\binom{j+1}{2}}\left[\begin{array}{c}
m-1 \\
j
\end{array}\right]_{q^{r}} \frac{\left(1+(-1)^{h} q^{n+k+r(m-j)}\right)^{m+1}}{1-q^{(m+1) k+r(m-j)}} \\
& =-\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1) m k+r\binom{m+1}{2}}}{\left(q^{(m+1) k+r} ; q^{r}\right)_{m}} \cdot\left(q^{r} ; q^{r}\right)_{m-1} \\
& +\left(q^{r} ; q^{r}\right)_{m-1}-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{r} ; q^{r}\right)_{m-1} .
\end{aligned}
$$

Now we show that this is equivalent to (2.1). We write (2.1), but replace the sum by the formula that we just obtained and get

$$
\begin{aligned}
&(1-\left.q^{(m+1) k+r m}\right) \frac{\left(q^{(m+1) k+r} ; q^{r}\right)_{m-1}}{\left(q^{r} ; q^{r}\right)_{m-1}} \times \\
& {\left[-\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1) m k+r\binom{m+1}{2}}}{\left(q^{(m+1) k+r} ; q^{r}\right)_{m}} \cdot\left(q^{r} ; q^{r}\right)_{m-1}\right.} \\
&\left.+\left(q^{r} ; q^{r}\right)_{m-1}-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{r} ; q^{r}\right)_{m-1}\right] \\
&=\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
&-(-1)^{m} q^{\frac{m(m+1)(2 k+r)}{2}}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1}
\end{aligned}
$$

Our goal is achieved once we see that this is an identity. For that, we will gradually simplify it until a trivial identity remains.

We need to prove that

$$
\begin{aligned}
& \left(1-q^{(m+1) k+r m}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m-1} \times \\
& {\left[-\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1) m k+r\binom{m+1}{2}}}{\left(q^{(m+1) k+r} ; q^{r}\right)_{m}}\right.} \\
& \left.+1-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\right] \\
& =\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
& -(-1)^{m} q^{\frac{m(m+1)(2 k+r)}{2}}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} .
\end{aligned}
$$

Combining the first two factors,

$$
\begin{aligned}
& \left(q^{(m+1) k+r} ; q^{r}\right)_{m} \times \\
& {\left[-\frac{(-1)^{m}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1) m k+r\binom{m+1}{2}}}{\left(q^{(m+1) k+r} ; q^{r}\right)_{m}}\right.} \\
& \left.+1-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\right] \\
& =\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
& -(-1)^{m} q^{\frac{m(m+1)(2 k+r)}{2}}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1},
\end{aligned}
$$

which we further rewrite:

$$
\begin{gathered}
(-1)^{m-1}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1} q^{(m+1) m k+r\binom{m+1}{2}}+\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
\quad-(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
=\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
\quad+(-1)^{m-1} q^{\frac{m(m+1)(2 k+r)}{2}}\left(1+(-1)^{h} q^{n-m k}\right)^{m+1},
\end{gathered}
$$

or

$$
\begin{aligned}
\left(q^{(m+1) k+r} ; q^{r}\right)_{m} & -(-1)^{(h+1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
& =\left(1-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\right)\left(q^{(m+1) k+r} ; q^{r}\right)_{m}
\end{aligned}
$$

or

$$
\begin{aligned}
& -(-1)^{(h-1)(m+1)} q^{n(m+1)+r\binom{m+1}{2}}\left(q^{(m+1) k+r} ; q^{r}\right)_{m} \\
& =-(-1)^{(h-1)(m+1)} q^{\frac{(m+1)(2 n+r m)}{2}}\left(q^{(m+1) k+r} ; q^{r}\right)_{m}
\end{aligned}
$$

Finally, we see that this is correct, and so we have proved the identities (i)-(iv).

References

[1] G. E. Andrews, The theory of partitions, Encyclopedia of mathematics and its applications, Vol. 2, Addison-Wesley, Reading, MA, 1976.
[2] E. Kılıç, I. Akkus, and H. Prodinger, A proof of a conjecture of Melham, The Fibonacci Quarterly, accepted.
[3] R. S. Melham, Families of identities involving sums of powers of the Fibonacci and Lucas numbers, The Fibonacci Quarterly 37.4 (1999), 315-319.
${ }^{1}$ TobB University of Economics and Technology Mathematics Department 06560 Sögütözü Ankara Turkey

E-mail address: ekilic@etu.edu.tr ${ }^{1}$
${ }^{2}$ Ankara University Mathematics Department 06100 Ankara Turkey
E-mail address: iakkus@science.ankara.edu. tr^{2}
${ }^{3}$ Department of Mathematics, University of Stellenbosch 7602 Stellenbosch South Africa

E-mail address: hproding@sun.ac.za ${ }^{3}$

[^0]: 2000 Mathematics Subject Classification. 11B37.
 Key words and phrases. Melham's Conjecture, Fibonomial coefficients.

