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Abstract. A generalization of one of Melham’s conjectures is presented. Af-
ter writing it in terms of Gaussian q–binomial coefficients, a solution is found

using the elementary technique of partial fraction decomposition.

1. Introduction

The Fibonomial coefficient is, for n ≥ m ≥ 1, defined by{
n

m

}
:=

F1F2 . . . Fn

(F1F2 . . . Fn−m) (F1F2 . . . Fm)

with
{
n

n

}
=
{
n

0

}
= 1 where Fn is the nth Fibonacci number .

For a detailed discussion of the Fibonomial coefficients, we refer to the list of
references in [2].

The Gaussian q–binomial coefficient
[
n

m

]
q

is defined, for all real n and integers

m with m ≥ 0, by[
n

m

]
q

:=
(q; q)n

(q; q)m(q; q)n−m

and as zero otherwise, where

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1).

Thus,
[
n

m

]
q

is a rational function of the parameter q. For more details, see [1].

Let

α =
1 +
√

5
2

and β =
1−
√

5
2

.

Then the well known Binet forms give

Fn =
αn − βn

α− β
, Ln = αn + βn,

and thus

Fn = αn−1 1− qn

1− q
, Ln = αn(1 + qn),

with q = β/α = −α−2, so that i = α
√
q, where Fn is the nth Fibonacci number

and Ln is the nth Lucas number. All the identities we are going to derive hold for
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general q, and results about Fibonacci and Lucas numbers come out as corollaries
for the special choice of q.

The link between the Fibonomial and Gaussian q–binomial coefficients is{
n

m

}
= αm(n−m)

[
n

m

]
q

with q = −α−2.

Melham [3] derived some families of identities between sums of powers of the
Fibonacci and Lucas numbers. He also conjectured a complex identity by using
a “falling” Fibonacci factorial (Fn)(m), which begins at Fn for n 6= 0, and is the
product of m Fibonacci numbers excluding F0. His conjecture is in two parts: Let
m,n, k ∈ Z with m ≥ 1. Then:

(a)

m−1∑
j=0

Fm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m−1)
2

Fm+1
n−mk

m∏
j=1

F(m+1)k+j

= F(m+1)(n+ m
2 ).

(b) The Lucas counterpart of (a),

m−1∑
j=0

Lm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m−1)
2

Lm+1
n−mk

m∏
j=1

F(m+1)k+j

=

{
5

m+1
2 F(m+1)(n+ m

2 ) if m is odd,
5

m
2 L(m+1)(n+ m

2 ) if m is even.

In [2], we rearranged the conjectures (a) and (b) by using Fibonomials and then
gave a solution of the conjecture by translating it into a q–expression: we were left
with the evaluation of a certain sum. This was achieved using contour integration.

The present paper is organized as follows: (i) We generalize the conjecture of
Melham by using indices in arithmetic progression for both, the Fibonacci and the
Lucas instance. (ii) Then we give a solution for this general formula by a partial
fraction decomposition method that is even simpler than the contour integration
given in [2] (although it is essentially equivalent).

2. A generalization of Melham’s Conjecture

In this section, we give a generalization of the Fibonomial coefficients in order
to state a general version of the conjecture of Melham.

Definition 1. For all integers n,m, r with m, r ≥ 1, the r–Fibonomial is defined
as {

n

m

}
r

:=
FnFn−r . . . Fn−r(m−1)

FrF2r . . . Fmr

with
{

n
0

}
r

= 1 where Fn is the nth Fibonacci number.

Now we give a generalization of the conjecture of Melham in terms of r–Fibonomials:

Theorem 1. For any integers m,n and k:
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(i) If r odd, then

m−1∑
j=0

(−1)
j(j−1)

2

{
(m+ 1)k +mr

j

}
r

{
(m+ 1)k + r(m− j − 1)

m− j − 1

}
r

Fm+1
n+k+r(m−j)

+ (−1)
m(m−1)

2 Fm+1
n−mk =

( m∏
j=1

F(m+1)k+rj

)
F(m+1)(n+ rm

2 ).

(ii) If r even, then

m−1∑
j=0

(−1)j

{
(m+ 1)k +mr

j

}
r

{
(m+ 1)k + r(m− j − 1)

m− j − 1

}
r

Fm+1
n+k+r(m−j)

+ (−1)mFm+1
n−mk =

( m∏
j=1

F(m+1)k+rj

)
F(m+1)(n+ rm

2 ).

(iii) The Lucas counterpart of (i),

m−1∑
j=0

(−1)
j(j−1)

2

{
(m+ 1)k +mr

j

}
r

{
(m+ 1)k + r(m− j − 1)

m− j − 1

}
r

×

Lm+1
n+k+r(m−j) + (−1)

m(m−1)
2 Lm+1

n−mk

=


5

m+1
2

(
m∏

j=1

F(m+1)k+rj

)
F(m+1)(n+ rm

2 ) if m is odd,

5
m
2

(
m∏

j=1

F(m+1)k+rj

)
L(m+1)(n+ rm

2 ) if m is even.

(iv) The Lucas counterpart of (ii),

m−1∑
j=0

(−1)j

{
(m+ 1)k +mr

j

}
r

{
(m+ 1)k + r(m− j − 1)

m− j − 1

}
r

Lm+1
n+k+r(m−j)

+(−1)mLm+1
n−mk =


5

m+1
2

(
m∏

j=1

F(m+1)k+rj

)
F(m+1)(n+ rm

2 ) if m is odd,

5
m
2

(
m∏

j=1

F(m+1)k+rj

)
L(m+1)(n+ rm

2 ) if m is even.

Proof. We want to point out that rewriting (i)–(iv) in terms of q–binomials produces
the same expression for (i) and (ii) and also for (iii) and (iv). We can combine all
the cases (i)–(iv) in one formula as follows:

(1− q(m+1)k+rm)
(q(m+1)k+r; qr)m−1

(qr; qr)m−1
×

m−1∑
j=0

(−1)jq
rj(j+1)

2

[
m− 1
j

]
qr

(1 + (−1)hqn+k+r(m−j))m+1

1− q(m+1)k+r(m−j)

=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m

− (−1)mq
m(m+1)(2k+r)

2 (1 + (−1)hqn−mk)m+1. (2.1)
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Here, h = 1 in (2.1) gives us the q–notation of the cases (i), (ii) and similarly
h = 0 in (2.1) gives the cases (iii) and (iv). For the proof, let us consider

X :=
1

(1− z)(1− zqr) . . . (1− zqr(m−1))

(
1 + (−1)hzqn+k+rm

)m+1

z(1− zq(m+1)k+rm)
.

Performing partial fraction decomposition, we get:

X =
m−1∑
j=0

(−1)jqr(j+1
2 )

(qr; qr)j(qr; qr)m−1−j

(
1 + (−1)hqn+k+rm−rj

)m+1

1− q(m+1)k+rm−rj

1
q−rj(1− zqrj)

+
C

1− zq(m+1)k+rm
+

1
z

with

C =

(
1 + (−1)hzqn+k+rm

)m+1

z(1− z)(1− zqr) . . . (1− zqr(m−1))

∣∣∣∣∣
z=q−(m+1)k−rm

.

We note that the degree of numerator and denominator is m+ 1. As z →∞,

X ∼ B

z
+O(z−2)

with

B =
(−1)m

qr(m
2 )

(
(−1)hqn+k+rm

)m+1

−q(m+1)k+rm
= (−1)(h+1)(m+1)qn(m+1)+r(m+1

2 ).

Furthermore,

zX =
m−1∑
j=0

(−1)jqr(j+1
2 )

(qr; qr)j(qr; qr)m−1−j

(
1 + (−1)hqn+k+rm−rj

)m+1

1− q(m+1)k+rm−rj
×

z

q−rj(1− zqrj)
+

Cz

1− zq(m+1)k+rm
+ 1,

and letting z approach ∞:

B =
m−1∑
j=0

(−1)j−1qr(j+1
2 )

(qr; qr)j(qr; qr)m−1−j

(
1 + (−1)hqn+k+rm−rj

)m+1

1− q(m+1)k+rm−rj

− C

q(m+1)k+rm
+ 1.

Thus, we get:

(−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )(qr; qr)m−1

=
m−1∑
j=0

(−1)j−1qr(j+1
2 )
[
m− 1
j

]
qr

(
1 + (−1)hqn+k+r(m−j)

)m+1

1− q(m+1)k+r(m−j)

− C · (qr; qr)m−1

q(m+1)k+rm
+ (qr; qr)m−1,
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or

m−1∑
j=0

(−1)jqr(j+1
2 )
[
m− 1
j

]
qr

(
1 + (−1)hqn+k+r(m−j)

)m+1

1− q(m+1)k+r(m−j)

= −C· (q
r; qr)m−1

q(m+1)k+rm
+(qr; qr)m−1−(−1)(h−1)(m+1)qn(m+1)+r(m+1

2 )(qr; qr)m−1.

(2.2)

Now we work out the constant C:

C =
1

q−(m+1)k−rm
× (

1 + (−1)hqn−mk
)m+1

(1− q−(m+1)k−rm)(1− q−(m+1)k−rmqr) . . . (1− q−(m+1)k−rmqr(m−1))

=
(−1)m

(
1 + (−1)hqn−mk

)m+1
q((m+1)k+rm)m−r(m

2 )

q−(m+1)k−rm(1− q(m+1)k+rm)(1− q(m+1)k+rm−r) . . . (1− q(m+1)k+r)

=
(−1)m

(
1 + (−1)hqn−mk

)m+1
q((m+1)k+rm)(m+1)−r(m

2 )

(1− q(m+1)k+rm)(1− q(m+1)k+rm−r) . . . (1− q(m+1)k+r)

=
(−1)m

(
1 + (−1)hqn−mk

)m+1
q(m+1)2k+rm(m+1)−r(m

2 )

(q(m+1)k+r; qr)m
. (2.3)

Using (2.2) and (2.3), we obtain

m−1∑
j=0

(−1)jqr(j+1
2 )
[
m− 1
j

]
qr

(
1 + (−1)hqn+k+r(m−j)

)m+1

1− q(m+1)k+r(m−j)

= − (−1)m(1 + (−1)hqn−mk)m+1q(m+1)mk+r(m+1
2 )

(q(m+1)k+r; qr)m
· (qr; qr)m−1

+ (qr; qr)m−1 − (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )(qr; qr)m−1.

Now we show that this is equivalent to (2.1). We write (2.1), but replace the sum
by the formula that we just obtained and get

(1− q(m+1)k+rm)
(q(m+1)k+r; qr)m−1

(qr; qr)m−1
×[

−
(−1)m

(
1 + (−1)hqn−mk

)m+1
q(m+1)mk+r(m+1

2 )

(q(m+1)k+r; qr)m
· (qr; qr)m−1

+ (qr; qr)m−1 − (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )(qr; qr)m−1

]
=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m

− (−1)mq
m(m+1)(2k+r)

2
(
1 + (−1)hqn−mk

)m+1
.

Our goal is achieved once we see that this is an identity. For that, we will gradually
simplify it until a trivial identity remains.
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We need to prove that

(1− q(m+1)k+rm)(q(m+1)k+r; qr)m−1×[
−

(−1)m
(
1 + (−1)hqn−mk

)m+1
q(m+1)mk+r(m+1

2 )

(q(m+1)k+r; qr)m

+ 1− (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )
]

=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m

− (−1)mq
m(m+1)(2k+r)

2
(
1 + (−1)hqn−mk

)m+1
.

Combining the first two factors,

(q(m+1)k+r; qr)m×[
−

(−1)m
(
1 + (−1)hqn−mk

)m+1
q(m+1)mk+r(m+1

2 )

(q(m+1)k+r; qr)m

+ 1− (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )
]

=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m

− (−1)mq
m(m+1)(2k+r)

2
(
1 + (−1)hqn−mk

)m+1
,

which we further rewrite:

(−1)m−1
(
1 + (−1)hqn−mk

)m+1
q(m+1)mk+r(m+1

2 ) + (q(m+1)k+r; qr)m

− (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )(q(m+1)k+r; qr)m

=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m

+ (−1)m−1q
m(m+1)(2k+r)

2
(
1 + (−1)hqn−mk

)m+1
,

or

(q(m+1)k+r; qr)m − (−1)(h+1)(m+1)qn(m+1)+r(m+1
2 )(q(m+1)k+r; qr)m

=
(

1− (−1)(h−1)(m+1)q
(m+1)(2n+rm)

2

)
(q(m+1)k+r; qr)m ,

or

− (−1)(h−1)(m+1)qn(m+1)+r(m+1
2 )(q(m+1)k+r; qr)m

= −(−1)(h−1)(m+1)q
(m+1)(2n+rm)

2 (q(m+1)k+r; qr)m.

Finally, we see that this is correct, and so we have proved the identities (i)–(iv).
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