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Abstract. The Filbert matrix FN has entries 1
Fi+j−1

and is an analogue of the

Hilbert matrix where Fn is the nth Fibonacci number. Various extensions are nowa-
days known with beautiful explicit results (LU-decomposition, Cholesky decomposi-
tions, etc.). The inverse Filbert matrix does, in these general instances, not have
closed form entries. Nevertheless, it can be decomposed itself in very much the same
way as the matrix. These results are not corollaries of the decomposition of the
Filbert matrix itself.

1. Introduction

The Filbert matrix FN = (ȟij)
N
i,j=1 is defined by ȟij = 1

Fi+j−1
as an analogue of the

Hilbert matrix where Fn is the nth Fibonacci number. It has been defined and studied
by Richardson [9] and extended by Berg [1] and Ismail [2].

Kilic and Prodinger, in a series of papers [3, 7, 4, 5, 6], extended the concept to
matrices with entries

1

Fλ(i+j)+rFλ(i+j+1)+r . . . Fλ(i+j+k−1)+r

and
1

Lλ(i+j)+rLλ(i+j+1)+r . . . Lλ(i+j+k−1)+r

.

Here, λ, k ≥ 1 and r ≥ −1 are integer parameters.
These generalizations were driven by the search for “nice” explicit formulæ for

• LU-decomposition of the matrix M as M = LU ,
• explicit description of L−1, U−1,
• the Cholesky decomposition M = C · CT ,
• the inverse matrix M−1.

Now, for k ≥ 2, the inverse matrix (both, in the Fibonacci and Lucas instances FN
and LN) are no longer nice; the entries can only be given as a (single) sum which
cannot be simplified.

Therefore, in this paper, we took the inverse matrices F−1
N and L−1

N as the focus of
our attention. It came somewhat as a surprise that LU-decompositions AB of these
matrices led to nice (=closed form) results, with A−1, B−1, as well as the Cholesky
decomposition D · DT and its inverse D−1 also being nice! Note carefully that from
two LU-decompositions M = LU and M−1 = AB, there is no obvious way to link the
matrices A and B to L and U . Furthermore, all these matrices appearing in our new
decompositions depend on the dimension N . This is in sharp contrast to the “old”
cases where one could always think about one infinite matrix, and restricts oneself to
the first N rows and columns.
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In another direction [5], the matrices GN and VN with entries

gij =
Fλ(i+j)+r
Fλ(i+j)+s

and vij =
Lλ(i+j)+r
Lλ(i+j)+s

were introduced; here s, r and λ are integer parameters such that s 6= r, and r, s ≥ −1
and λ ≥ 1. For this situation, it seems to be impossible to introduce an extra parameter
k as above, in order to get reasonable results.

We managed the decompose the inverse matrices G−1
N and V−1

N as well. These inverse
matrices are of closed form entries this time, but it is interesting anyway to study their
decompositions.

Now we discuss our settings. Let {Fn} and {Ln} be the Fibonacci and Lucas se-
quences, respectively, whose the Binet forms are

Fn =
αn − βn

α− β
= αn−11− qn

1− q
and Ln = αn + βn = αn(1 + qn)

with q = β/α = −α−2, so that α = i/
√
q.

We will exclusively deal with the q-forms; translating the results back to the Fi-
bonacci and Lucas world is easy: We only have to systematically replace 1 − qn by
1−q
αn−1Fn and 1 + qn by αnLn and replace what is eventually left by its numerical val-
ues. One might also think about one parameter extensions of Fibonacci resp. Lucas
numbers.

Throughout this paper we will use the notation of the q-Pochhammer symbol (x; q)n =
(1− x)(1− xq) · · · (1− xqn−1).

The important contribution of this paper is to find the explicit forms of the various
entries. This was done by experiments with a computer algebra system and spotting
patterns. This becomes increasingly complicated when more and more new parameters
are introduced, as the guessing only works for fixed choices of the parameters, and one
needs to vary them as well.

Once one knows how the entries look like, proofs are by reducing sums to single
terms. For this, the q-Zeilberger algorithm is a handy tool. In some instances, this
does not work, and we have to simulate the q-Zeilberger algorithm manually by doing
more guessing (with an additional parameter).

These proofs are routine and somewhat tedious; we will thus only present a few of
them and leave the others to the imagination of the reader.

Instead of proving that AB = M−1 where M−1 has ugly coefficients, we prove the
equivalent statement B−1A−1 = M . Of course, that requires first to prove that the
forms given for A−1 and B−1 are indeed correct.

2. The matrix F−1
N

We consider the matrix FN with entries

1

Fλ(n+d)+rFλ(n+d+1)+r . . . Fλ(n+d+k−1)+r
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for 1 ≤ n, d ≤ N . First, it is easy to check that the entries in rewritten form are

qλ
kn
2
+λ kd

2
+λ

k(k−1)
4

− k
2
+ rk

2 i−λkn−λkd−λ
k(k−1)

2
−rk+k (qλ+r; qλ)n+d−1(1− q)k

(qλ+r; qλ)n+d+k−1

.

We denote the LU-decomposition and Cholesky-decomposition by

F−1
N = A ·B = D ·DT .

Then we get the following results:

Theorem 1. For 1 ≤ d ≤ n ≤ N :

•

An,d = qλ
n(n+1)

2
−λ d(d+1)

2
+λN(d−n)+λ k(d−n)

2 iλ(n−d)k+2(n−d)

× (qλ+r; qλ)N+n+k−1(q
λ; qλ)N−d(q

λ+r; qλ)2d
(qλ+r; qλ)N+d+k−1(qλ+r; q)n+d(qλ; qλ)n−d(qλ; qλ)N−n

•

A−1
n,d = q−λNn+λn

2+λNd−λnd−λ kn
2
+λ kd

2 iλk(n−d)

× (qλ+r; qλ)N+n+k−1(q
λ; qλ)N−d(q

λ+r; qλ)n−1+d

(qλ+r; qλ)N+d+k−1(qλ; qλ)N−n(qλ+r; qλ)2n−1(qλ; qλ)n−d

•

Bd,n = qλ
n(n+1)

2
−λNn+λ 3d2

2
−λNd−λ d

2
−λ kn

2
−λ kd

2
−λ k(k−1)

4
− kr

2
−rN+ k

2
+rd

× iλnk+λdk−2n−2d+λ
k(k−1)

2
+kr−k

× (qλ+r; qλ)N+n+k−1(q
λ+r; qλ)N+d(q

λ; qλ)k−1

(qλ; qλ)N−d+k−1(qλ; qλ)N−n(qλ; qλ)n−d(qλ+r; qλ)n+d(qλ+r; qλ)2d−1(1− q)k

•

B−1
d,n = i−λkn−λkd+λ

3k(k−1)
2

−kr+k

× qλNn−λnd−λn2+λNd+λ kn
2
+λ kd

2
+λ

k(k−1)
4

−rn+Nr+ kr
2
− k

2

× (qλ; qλ)N−n+k−1(q
λ; qλ)N−d(q

λ+r; qλ)2n(qλ+r; qλ)n+d−1(1− q)k

(qλ+r; qλ)N+n(qλ+r; qλ)N+d+k−1(qλ; qλ)n−d(qλ; qλ)k−1

•

Dn,d = qλ
d2

2
−λ d

2
+λnk

2
+λ

k(k−1)
8

+ rd
2
− r

2
+ rk

4
− k

4 iλkn+k
2− k

2
− rk

2
−λ k(k−1)

4

× (qλ; qλ)n−1(q
λ+r; qλ)n(1− q)k/2

(qλ+r; qλ)n+d+k−1(qλ; qλ)n−d

×

√
(qλ; qλ)d+k−2(qλ+r; qλ)d+k−1

(qλ; qλ)k−1(qλ+r; qλ)d(qλ; qλ)d−1

(1− qλ(2d+k−1)+r)
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•

D−1
n,d = q−λdn+λ

d2

2
+λ d

2
−λ dk

2
−λ k(k−1)

8
− rn

2
+ r

2
− rk

4
+ k

4 i−λkd+λ
k(k−1)

4
+ rk

2
− k

2

× (qλ+r; qλ)n+d+k−2

(qλ; qλ)n−d(qλ; qλ)d−1(qλ+r; qλ)d(1− q)k/2

×

√
(qλ; qλ)n−1(qλ+r; qλ)n(qλ; qλ)k−1(1− qλ(2n+k−1)+r)

(qλ; qλ)n+k−2(qλ+r; qλ)n+k−1

3. The matrix L−1
N

We consider the matrix LN with entries

1

Lλ(n+d)+rLλ(n+d+1)+r . . . Lλ(n+d+k−1)+r

for 1 ≤ n, d ≤ N .
We denote again the LU-decomposition and Cholesky-decomposition by

L−1
N = A ·B = D ·DT ;

there is no danger of confusion to use the same letters again.
Then we get the following results:

Theorem 2. For 1 ≤ d ≤ n ≤ N :

•
An,d = qλ

n(n+1)
2

−λ d(d+1)
2

−λN(n−d)−λ k(n−d)
2 iλk(n−d)−2(n−d)

× (−qλ+r; qλ)N+n+k−1(−qλ+r; qλ)2d(qλ; qλ)N−d

(−qλ+r; qλ)N+d+k−1(−qλ+r; qλ)n+d(qλ; qλ)N−n(qλ; qλ)n−d
•

A−1
n,d = qλn

2−λNn+λNd−λnd−λ kn
2
+λ kd

2 iλk(n−d)

× (−qλ+r; qλ)N+n+k−1(−qλ+r; qλ)n+d−1(q
λ; qλ)N−d

(−qλ+r; qλ)N+d+k−1(−qλ+r; qλ)2n−1(qλ; qλ)N−n(qλ; qλ)n−d
•

Bd,n = qλ
n(n+1)

2
−λNn+λ d(3d−1)

2
−λ kn

2
+λ kd

2
−λNd−λkd−λ k(k−1)

4
+rd−Nr− kr

2

× iλkn−2n+λkd+λ
k(k−1)

2
+2N+rk

× (−qλ+r; qλ)N+n+k−1(−qλ+r; qλ)N+d+k−1(−qλ+r; qλ)N+d

(−qλ+r; qλ)N+d+k−1(−qλ+r; qλ)n+d(−qλ+r; qλ)2d−1

× (qλ; qλ)k−1

(qλ; qλ)N−n(qλ; qλ)n−d(qλ; qλ)N−d+k−1

•
B−1
d,n = q−λn

2+λNn−λdn+λNd+λ kn
2
+λ dk

2
+λ

k(k−1)
4

−rn+Nr+ kr
2

× i−λk(n+d)−λ
k(k−1)

2
+2N−2n−rk
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× (−qλ+r; qλ)n+d+1(−qλ+r; qλ)2n
(−qλ+r; qλ)N+n(−qλ+r; qλ)N+d+k−1

(qλ; qλ)N−n+k−1(q
λ; qλ)N−d

(qλ; qλ)n−d(qλ; qλ)k−1

•
Dn,d = qλ

n(n+1)
2

−λNn+λ d(d−1)
2

−λ kn
2
−λ k(k−1)

8
+ rd

2
− rk

4
−Nr

2

× id+N+λ
k(k−1)

4
+λkn+ kr

2
(−qλ+r; qλ)N+n+k−1

(−qλ+r; qλ)n+d(qλ; qλ)N−n(qλ; qλ)n−d

×

√
(qλ; qλ)N−d(−qλ+r; qλ)N+d(qλ; qλ)k−1(1 + q2λd+r)

(qλ; qλ)N−d+k−1(−qλ+r; qλ)N+d+k−1

•
D−1
n,d = q−λdn+λdN+λ dk

2
+λ

k(k−1)
8

− rn
2
+ rk

4
+Nr

2 in+λkd+N−λ k(k−1)
4

− rk
2

× (−qλ+r; qλ)n+d−1(q
λ; qλ)N−d

(−qλ+r; qλ)N+d+k−1(qλ; qλ)n−d

×

√
(qλ; qλ)N−n+k−1(−qλ+r; qλ)N+n+k−1(1 + q2λn+r)

(qλ; qλ)N−n(−qλ+r; qλ)N+n(qλ; qλ)k−1

4. The matrix G−1
N

We consider GN with entries
Fλ(n+d)+r
Fλ(n+d)+s

and again
G−1
N = A ·B = D ·DT .

Theorem 3. For 1 ≤ d ≤ n ≤ N :

•

An,d = (−1)n−dqλ
n(n+1)

2
−λ d(d+1)

2
+λNd−λNn1− qλN(N+1)+sN+r−(d+1)s−λd2−λn

1− qλN(N+1)+sN+r−(d+1)s−λd2−λd

× (qs+λ; qλ)N+n(qλ; qλ)N−d(q
s+λ; qλ)2d

(qλ; qλ)N−n(qs+λ; qλ)n+d(qλ; qλ)n−d(qs+λ; qλ)N+d

•

A−1
n,d = qλn

2−λNn+λNd−λnd 1− qλd+λN(N+1)−λn2+r+s(N−n)

1− qλn+λN(N+1)−λn2+r+s(N−n)

× (qs+λ; qλ)n+d−1(q
s+λ; qλ)N+n(qλ; qλ)N−d

(qs+λ; qλ)2n−1(q; q)n−d(qλ; qλ)N−n(qs+λ; qλ)N+d

•

Bd,n = (−1)n−dis−rqλ
n2

2
+λ 3d2

2
−λNn−λNd+λn−d

2
+sd−Ns− s−r

2
1− qλN(N+1)−λd2−λn+r+s(N−d−1)

1− qλN(N+1)−λd2+λd+r+s(N−d)

× (qs+λ; qλ)N+n(qs+λ; qλ)N+d

(qs+λ; qλ)n+d(qλ; qλ)n−d(qλ; qλ)N−n(qs+λ; qλ)2d−1(qλ; qλ)N−d

1

1− qr−s
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•

B−1
d,n = ir−sq−λn

2+λNn+λNd−λnd− r−s
2

+s(N−n)(1− qr−s)

× 1− qλN(N+1)−λn2+λd+r+s(N−n)

1− qλN(N+1)−λn2−λn+r+s(N−n−1)

(qλ; qλ)N−n(qλ; qλ)N−d(q
s+λ; qλ)n+d−1(q

s+λ; q)2n
(qs+λ; q)N+n(qs+λ; qλ)N+d(qλ; qλ)n−d

•

Dn,d = i
s−r
2 qλ

n(n+1)
2

−λ d(d−1)
2

−λNn+ r−s
4

− s(N−d)
2

×
(

1− qλN(N+1)−λd2−λn+r+s(N−1−d)
) (qs+λ; qλ)N+n

(qλ; qλ)N−n(qs+λ; qλ)n+d(qλ; qλ)n−d

×

√
1− q2λd+s

(1− qλN(N+1)−λd(d−1)+r+s(N−d))(1− qλN(N+1)−λd(d+1)+r+s(N−1−d))(1− qr−s)
•

D−1
n,d = i

r−s
2 q2λd(N−n)− r−s

4
+s(N−n)

×
(

1− qλN(N+1)−λn2+λd+r+s(N−n)
)(qλ; qλ)N−d(q

s+λ; qλ)n+d−1

(qs+λ; qλ)N+d(qλ; qλ)n−d

×

√
(1− q2λn+s)(1− qr−s)

(1− qλN(N+1)−λn(n−1)+r+s(N−n))(1− qλN(N+1)−λn(n+1)+r+s(N−1−n))

5. The matrix V−1
N

We consider VN with entries
Lλ(n+d)+r
Lλ(n+d)+s

and again

V−1
N = A ·B = D ·DT .

Theorem 4. For 1 ≤ d ≤ n ≤ N :

•

An,d = (−1)n−dqλ
n(n+1)

2
−λ d(d+1)

2
+λNd−λNn1− (−1)N+dqλN(N+1)+sN+r−(d+1)s−λd2−λn

1− (−1)N+dqλN(N+1)+sN+r−(d+1)s−λd2−λd

× (−qs+λ; qλ)N+n(qλ; qλ)N−d(−qs+λ; qλ)2d
(qλ; qλ)N−n(−qs+λ; qλ)n+d(qλ; qλ)n−d(−qs+λ; qλ)N+d

•

A−1
n,d = qλn

2−λNn+λNd−λnd 1 + (−1)N+nqλd+λN(N+1)−λn2+r+s(N−n)

1 + (−1)N+nqλn+λN(N+1)−λn2+r+s(N−n)

× (−qs+λ; qλ)n+d−1(−qs+λ; qλ)N+n(qλ; qλ)N−d

(−qs+λ; qλ)2n−1(q; q)n−d(qλ; qλ)N−n(−qs+λ; qλ)N+d
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•

Bd,n = (−1)N+nis−rqλ
n2

2
+λ 3d2

2
−λNn−λNd+λn−d

2
+sd−Ns− s−r

2

× 1− (−1)N+dqλN(N+1)−λd2−λn+r+s(N−d−1)

1 + (−1)N+dqλN(N+1)−λd2+λd+r+s(N−d)

× (−qs+λ; qλ)N+n(−qs+λ; qλ)N+d

(−qs+λ; qλ)n+d(qλ; qλ)n−d(qλ; qλ)N−n(−qs+λ; qλ)2d−1(qλ; qλ)N−d

1

1− qr−s
•

B−1
d,n = (−1)N+nir−sq−λn

2+λNn+λNd−λnd− r−s
2

+s(N−n)

× 1 + (−1)N+nqλN(N+1)−λn2+λd+r+s(N−n)

1− (−1)N+nqλN(N+1)−λn2−λn+r+s(N−n−1)

× (qλ; qλ)N−n(qλ; qλ)N−d(−qs+λ; qλ)n+d−1(−qs+λ; q)2n
(−qs+λ; q)N+n(−qs+λ; qλ)N+d(qλ; qλ)n−d

(1− qr−s)

•

Dn,d = (−1)N+di
s−r
2 qλ

n(n+1)
2

−λ d(d−1)
2

−λNn+ r−s
4

− s(N−d)
2

√
1 + q2λd+s

1− qr−s

×
(

1− (−1)N+dqλN(N+1)−λd2−λn+r+s(N−1−d)
) (−qs+λ; qλ)N+n

(qλ; qλ)N−n(−qs+λ; qλ)n+d(qλ; qλ)n−d

×

√
1

(1 + (−1)N+dqλN(N+1)−λd(d−1)+r+s(N−d))(1− (−1)N+dqλN(N+1)−λd(d+1)+r+s(N−1−d))

•

D−1
n,d = (−1)N+ni

r−s
2 q2λd(N−n)− r−s

4
+s(N−n)

×
(

1 + (−1)N+nqλN(N+1)−λn2+λd+r+s(N−n)
)(qλ; qλ)N−d(−qs+λ; qλ)n+d−1

(−qs+λ; qλ)N+d(qλ; qλ)n−d

×

√
(1 + q2λn+s)(1− qr−s)

(1 + (−1)N+nqλN(N+1)−λn(n−1)+r+s(N−n))(1− (−1)N+nqλN(N+1)−λn(n+1)+r+s(N−1−n))

6. Some sample proofs

We consider AA−1 related to Section 2.

∑
d

Am,dA
−1
d,n = iλmk+2m−λknqλ

m(m+1)
2

−λNm−λ km
2

+λNn+λ kn
2

× (qλ+r; qλ)N+m+k−1(q
λ; qλ)N−n

(qλ; qλ)N−m(qλ+r; qλ)N+n+k−1

×
∑
d

(−1)dqλ
d(d−1)

2
−λdn
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× (qλ+r; qλ)2d
(qλ+r; q)m+d(qλ; qλ)m−d

(qλ+r; qλ)d−1+n

(qλ+r; qλ)2d−1(qλ; qλ)d−n
.

With qλ = Q and qr = b, the sum in question is∑
d

(−1)dQ
d(d−1)

2
−dn (bQ;Q)2d

(bQ;Q)m+d(Q;Q)m−d

(bQ;Q)d−1+n

(bQ;Q)2d−1(Q;Q)d−n
.

Essentially, this sum has appeared already in an earlier paper [4]. The q-Zeilberger
algorithm [8] evaluates it to 0 for m > n. For m = n, a direct evaluation produces∑

d

Am,dA
−1
d,m = Am,mA

−1
m,m = 1. �

Now we present one proof related to Section 4, namely that∑
n≤d≤m

Am,dA
−1
d,n =

{
0 for n < m,

1 for n = m.

This is easy to check for m = n, so let us assume that n < m. Here, Zeilberger’s
algorithm (as implemented in [8]) does not seem to work. We will present, in order not
to overburden the notation, the representative case λ = 1, r = 0, s = 1. By performing
computer experiments (creative guessing) we found that for n ≤ K ≤ m∑
n≤d≤K

Am,dA
−1
d,n = q

K(K+1)
2

−n(K+1)+Nn−Nm+
m(m+1)

2 (−1)m−K 1− qN(N+2)+n−m−(K+1)2

1− qN(N+2)−(K+1)2

× (q; q)N+m+1(q; q)N−n(q; q)n+1+K

(q; q)m+1+K(q; q)N+1+n(q; q)m−1−K(q; q)K−n(q; q)N−m(1− qm−n)
.

We denote temporarily the explicit formula by Ψ(K). Once this result has been es-
tablished, we have the desired conclusion for K = m, since there is a (q; q)−1 in the
denominator. The formula itself will be proved by induction. For K = n it is easy to
check, and otherwise we must show that

Ψ(K − 1) + Am,KA
−1
K,n = Ψ(K).

After a few cancellations, this amounts to prove that

− 1− qN(N+2)+n−m−K2

1− qN(N+2)−K2

(1− qm+K+1)(1− qK−n)

(1− qm−n)

+ (1− q2K+1)
1− qn+N(N+1)−K2+N−K

1− qN(N+1)−K2+N

1− qN(N+1)+N−K−1−K2−m

1− qN(N+1)+N−2K−1−K2

= qK−n1− qN(N+2)+n−m−(K+1)2

1− qN(N+2)−(K+1)2

(1− qn+1+K)(1− qm−K)

(1− qm−n)
,

which is easy to check (best by a computer). Once again, the difficult part here is to
guess the correct formula. We hope that the future will bring extensions of Zeilberger’s
algorithm that do such a proof automatically.
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