
BOOTSTRAPPING AND GUMBEL LIMIT LAWS

HELMUT PRODINGER AND STEPHAN WAGNER

Abstract. We provide a rather general asymptotic scheme for combinatorial parameters
that asymptotically follow a Gumbel distribution. It is based on analysing generating
functions Gh(z) whose dominant singularities converge to a certain value at an exponential
rate. This behaviour is typically found by means of a bootstrapping approach. Our scheme
is illustrated by a number of classical and new examples, such as the longest run in words
or compositions, patterns in Dyck and Motzkin paths, or the maximum degree in plane
trees.

1. Introduction

In many combinatorial problems, one encounters the situation that one obtains a se-
quence of generating functions Gh(z), depending on a parameter h whose distribution is to
be studied, such that the dominant singularity ζh of Gh converges to a value ζ as h→∞,
and ζh − ζ decreases exponentially with h. The archetypical example is probably the dis-
tribution of the longest sequence of 1’s in a random 0-1-sequence: Let Gh(z) denote the
generating function for 0-1-sequences with the property that there is no sequence of more
than h consecutive 1’s. Such a word can be symbolically described as

Seq(0)× Seq(Seq1..h(1)× Seq≥1(0))× Seq0..h(1), (1)

which translates directly to the following expression for the generating function:

Gh(z) =
1

1− z
·
(

1− z(1− zh)
1− z

· z

1− z

)−1

· 1− zh+1

1− z
=

1− zh+1

1− 2z + zh+2
.

Note that limh→∞Gh(z) = 1
1−2z

is the generating function for all 0-1-sequences. The
dominant singularity ζh of this rational function is a pole close to 1/2, the unique positive
solution of the equation 2z − zh+2 = 1. By means of bootstrapping, one finds that ζh =
1/2 + 2−h−3 + O(h2−2h). Such behaviour in the dominant singularity typically leads to
a Gumbel limit law and periodic fluctuations in the moments. This was probably first
observed by Knuth [9] in his work on carry propagation. In the present example, we find:
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• If Ln is the length of the longest sequence of consecutive 1’s in a random 0-1-
sequence of length n, then the mean of Ln is

E(Ln) = log2 n+
γ

log 2
− 3

2
+ ψ(log2 n) + o(1)

for a 1-periodic function ψ that will be specified later.
• The shifted random variable Ln − log2 n converges to a Gumbel (extreme value)

distribution:

P(Ln ≤ log2 n+ x) ∼ exp(−2−x−2).

General schemes treating the case of rational generating functions [7] and functions
with a square root singularity [14] have been provided, but there remain many examples
that are not covered by these papers. Our aim is to provide a reasonably general framework
of families of generating functions whose structure leads to the same behaviour as in our
first example (Gumbel limit law, fluctuations in the moments). The main result reads as
follows:

Theorem 1. Let Gh(z) =
∑

n≥0 ahnz
n (h ≥ 0) be a sequence of generating functions such

that ahn is nondecreasing in h and

lim
h→∞

Gh(z) = G(z) =
∑
n≥0

anz
n,

and let Xn denote the sequence of random variables with support N0 = {0, 1, 2, . . .} defined
by

P(Xn ≤ h) =
ahn
an

.

Assume, moreover, that each generating function Gh has a singularity at ζh ∈ C, such that

• ζh = ζ + cρh + o(ρh) as h→∞ for some constants ζ > 0, c > 0 and ρ ∈ (0, 1).
• Gh(z) can be continued analytically to the domain

{z ∈ C : |z| ≤ (1 + δ)|ζh|, | arg(z/ζh − 1)| > φ}

for some fixed δ > 0 and φ ∈ (0, π/2), and

Gh(z) = Ah(z) + Ch(1− z/ζh)α + o(1− z/ζh)α

holds within this domain, uniformly in h, where Ah(z) is analytic and uniformly
bounded in h within the aforementioned region, α ∈ R \ N0, and Ch is a constant
depending on h such that limh→∞Ch = C. Finally,

G(z) = A(z) + C(1− z/ζ)α + o(1− z/ζ)α

in the region

{z ∈ C : |z| ≤ (1 + δ)|ζ|, | arg(z/ζ − 1)| > φ}

for a function A(z) that is analytic within this region.
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Then the asymptotic formula
ahn
an

= exp
(
−Anρh

) (
1 + o(1)

)
holds as n→∞ and h = logb n+O(1), where b = ρ−1 and A = c/ζ. Hence the normalised
random variable Xn − logb n converges weakly to a Gumbel distribution.

Remark 1. Naturally, it is sufficient if all conditions hold only for h ≥ h0.

Remark 2. One can easily extend this theorem to the case when the behaviour at the
dominant singularity also contains logarithmic terms.

Under slightly stronger conditions, one can also prove an asymptotic formula for the
mean, which shows the typical fluctuating behaviour in its second-order term. Higher order
moments can be treated along the same lines, see [10].

Theorem 2. In the setting of Theorem 1, assume additionally that

(1) there exists a constant K such that ahn = an for h > Kn,
(2)

∑
h≥0 |C − Ch| <∞,

(3) the asymptotic expansions of Gh and G around their singularities are given by

Gh(z) = Ah(z) + Ch(1− z/ζh)α +Bh(1− z/ζh)α+1 + o(1− z/ζh)α+1,

uniformly in h, and

G(z) = A(z) + C(1− z/ζ)α +B(1− z/ζ)α+1 + o(1− z/ζ)α+1,

respectively, such that limh→∞Bh = B.

Then the mean of Xn satisfies

E(Xn) = logb n+ logbA+
γ

log b
+

1

2
+ ψb

(
logb(An)

)
+ o(1),

where γ denotes the Euler-Mascheroni constant and ψ is the 1-periodic function that is
defined by the Fourier series

ψb(x) = − 1

log b

∑
k 6=0

Γ
(
−2kπi

log b

)
e2kπix.

Remark 3. The conditions are quite natural for combinatorial applications, but of course it
is possible to modify them in various ways (e.g., by allowing further terms in the asymptotic
expansions with exponents between α and α + 1), with additional assumptions on the
coefficients.

Proofs of these two theorems are provided in the following section. As they stand,
they are quite general, but it might be tedious to check the conditions. Hence we discuss
an important special case in Section 3. Thereafter, we consider a variety of combinatorial
examples to which this general asymptotic scheme can be applied.
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2. Proof of the main results

In order to prove Theorem 1, all that needs to be done is to invoke the Flajolet-Odlyzko
singularity analysis, see for instance Chapter VI in [2]. By the uniformity condition, we
have

ahn =
Ch

Γ(−α)
n−α−1ζ−nh (1 + o(1))

uniformly in h as n→∞ as well as

an =
C

Γ(−α)
n−α−1ζ−n(1 + o(1)).

Since in addition Ch → C and ζh = ζ + cρh + o(ρh), we obtain

ahn
an

=
(ζh
ζ

)−n
(1 + o(1)) = exp

(
−cn
ζ
ρh + o(nρh)

)
(1 + o(1))

= exp
(
−cn
ζ
ρh
)

(1 + o(1))

as n, h→∞ and h = logb n+O(1). �

For the proof of Theorem 2, we need to refine the above estimate for ahn

an
. Note first

that the mean of Xn is given by

E(Xn) =
∑
h≥0

P(Xn > h) =
∑
h≥0

(
1− P(Xn ≤ h)

)
=
∑
h≥0

(
1− ahn

an

)
,

and by our assumptions, we can reduce this to a finite sum:

E(Xn) =
∑

0≤h≤Kn

(
1− ahn

an

)
.

Translating the asymptotic expansions of Gh and G around their singularities to asymptotic
expansions of their coefficients by means of singularity analysis, we obtain

ahn =
Ch

Γ(−α)
n−α−1ζ−nh

(
1− (α + 1)Bh

Chn
+ o(n−1)

)
,

uniformly in h, as well as

an =
C

Γ(−α)
n−α−1ζ−n

(
1− (α + 1)B

Cn
+ o(n−1)

)
.

Putting them together, we find

ahn
an

=
(ζh
ζ

)−n(Ch
C
− (α + 1)(BhC −BCh)

C2n
+ o(n−1)

)
.

If now h0 = b1/2 logb nc, then

ζh0

ζ
= 1 +

c

ζ
ρh0 + o(ρh0) = 1 +

c

ζ
√
n

+ o(n−1/2),



BOOTSTRAPPING AND GUMBEL LIMIT LAWS 5

which implies that
ahn
an
� exp(−κ

√
n )

for a positive constant κ, and by monotonicity of ahn we also have
ahn
an
� exp(−κ

√
n )

for h ≤ h0. This means that we can replace ahn

an
by exp(−cn/ζ · ρh) within this region at

the expense of an error term that goes faster to zero than any power of n.

For n ≥ 1/2 logb n, note that

(α + 1)(BhC −BCh)
C2

= o(1)

by the assumptions on Bh and Ch, hence we can combine the two error terms, and sum-
mation over all h yields only a o(1), since we have restricted the range to h ≤ Kn. Thus
we get

E(Xn) =
∑

0≤h≤Kn

(
1− exp

(
−cn
ζ
· ρh
))

+
∑

h0≤h≤Kn

(
exp
(
−cn
ζ
· ρh
)
−
(ζh
ζ

)n)
+ o(1). (2)

Now let

ε = ε(n) = sup
h≥h0

∣∣∣∣ζρ−hc log
ζh
ζ
− 1

∣∣∣∣
and note that ε→ 0 as n→∞ by our assumptions on ζh. Then

exp
(
−c(1 + ε)n

ζ
· ρh
)
≤
(ζh
ζ

)n
≤ exp

(
−c(1− ε)n

ζ
· ρh
)

and thus ∑
h≥0

(
exp
(
−cn
ζ
· ρh
)
− exp

(
−c(1− ε)n

ζ
· ρh
))

≤
∑

h0≤h≤Kn

(
exp
(
−cn
ζ
· ρh
)
−
(ζh
ζ

)n)
≤
∑
h≥0

(
exp
(
−cn
ζ
· ρh
)
− exp

(
−c(1 + ε)n

ζ
· ρh
))

.

(3)

Finally, the asymptotic formula∑
h≥0

(
1− exp

(
−xb−h

))
= logb x+

γ

log b
+

1

2
+ ψb(logb x) +O

(1

x

)
(4)

is a standard application of the Mellin transform (see for instance [1]), which shows that
the sum that is estimated in (3) is indeed O(ε + n−1) and thus goes to 0 with n. Hence
the main term in (2) is the first sum, which we extend to the entire range h ∈ [0,∞) at
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the expense of another exponentially small error term. Now we can apply (4) once again
to obtain the final result. �

3. A special case

An important special case of Theorem 1, which occurs in many interesting examples
as will be shown in the following section, is that the generating functions Gh(z) can be
written in terms of z and zh:

Theorem 3. Let Gh(z) =
∑

n≥0 ahnz
n (h ≥ 0) be a sequence of generating functions that

can be written as
Gh(z) = A(z, zh) +B(z, zh)R(z, zh)α

for α ∈ R \ N0 and bivariate functions A(z, u), B(z, u), R(z, u) that are analytic for
|z| ≤M1 and |u| ≤M2, and assume that

• r0(z) := R(z, 0) has a simple positive real root ζ < min(M1, 1) and no other roots
in {z : |z| ≤ ζ},
• r0(z) is positive for z < ζ,
• and r1(z) := ∂R

∂u
(z, 0) is positive for z = ζ.

Then the conditions of Theorem 1 and Theorem 2 are satisfied for sufficiently large h with

ρ = ζ, c = −r1(ζ)

r′0(ζ)
= −

∂R
∂u

(ζ, 0)
∂R
∂z

(ζ, 0)
and A = −

∂R
∂u

(ζ, 0)

ζ ∂R
∂z

(ζ, 0)
,

i.e., Xn follows a Gumbel distribution and

E(Xn) = logb n+ logbA+
γ

log b
+

1

2
+ ψb

(
logb(An)

)
+ o(1),

where b = ρ−1 = ζ−1.

Remark 4. This theorem includes the special cases α = −1 and α = 1/2 treated in [7] and
[14] respectively.

Proof. We follow the same arguments as in [7] and [14]. For suitable 0 < κ < (M1 − ζ)/2,
there is no other root of r0 than ζ inside the disk {z : |z| ≤ ζ + 2κ}, and the inequality

|R(z, zh)−R(z, 0)| � (ζ + κ)h < |R(z, 0)|
holds on the circle {z : |z| = ζ + κ} for sufficiently large h. Rouché’s Theorem shows that
R(z, zh) has exactly one simple root in the disk {z : |z| ≤ ζ + κ} for sufficiently large h.
Moreover, since

sgn(R(ζ, ζh)) = sgn
(∂R
∂u

(ζ, 0)
)

= sgn(r1(ζ)) = 1

and
sgn
(
R(ζ + h−1, (ζ + h−1)h)

)
= sgnR(ζ + h−1, 0) = −1
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for sufficiently large h, there must be a real root ζh = ζ + εh of R(z, zh) with 0 < εh < h−1.
It follows that ζhh � ζh as h→∞. We can now determine the asymptotic behaviour of ζh
by means of bootstrapping. Expanding R(z, zk) around z = ζh now yields

0 = R(ζh, ζ
h
h ) = εh ·

∂R

∂z
(ζ, 0) +O(ε2h + ζh),

hence εh = O(ζh) and ζhh = ζh +O(hζ2h), which gives us the more precise expansion

0 = R(ζh, ζ
h
h ) = εh ·

∂R

∂z
(ζ, 0) + ζh

∂R

∂u
(ζ, 0) +O(ε2h + hζ2h),

so finally ζh = ζ + cζh + O(hζ2h), which shows that the requirements of Theorem 1 are
indeed satisfied with ρ = ζ and c = −r1(ζ)/r′0(ζ).

In order to show that the conditions of Theorem 2 hold as well, note first that

[zn]
(
A(z, zh) +B(z, zh)R(z, zh)α

)
= [zn] (A(z, 0) +B(z, 0)R(z, 0)α)

for n < h, so the first of our conditions is indeed satisfied. Now write R(z, zh) = (1 −
z/ζh)sh(z). Then

sh(ζh) = −ζh
d

dz
R(z, zk)

∣∣∣
z=ζh

= −ζh
(
∂R

∂z
(ζh, ζ

h
h ) + hζh−1

h

∂R

∂u
(ζh, ζ

h
h )

)
= −ζh

(
∂R

∂z
(ζ, 0)(1 +O(εh + ζh)) + hζh−1

h

∂R

∂u
(ζ, 0)(1 +O(εh + ζh))

)
= −ζ ∂R

∂z
(ζ, 0) (1 +O(hζh))

= −ζr′0(ζ) (1 +O(hζh)).

Analogously,

s′h(ζh) = −ζ
2
r′′0(z) (1 +O(h2ζh)),

yielding an expansion

R(z, zh) = (1− z/ζh)(β0h + β1h(1− z/ζh) + · · · ),
where βih → βi at an exponential rate. The same can be done with B(z, zh), showing
eventually that properties (2) and (3) of Theorem 2 are indeed satisfied. �

4. Examples

4.1. Words and digital expansions. As it was mentioned in the introduction, this is
perhaps the most classical example of our asymptotic scheme: repetitions of a letter in a
word (equivalently, digits in a number), which was first discussed in the context of carry
propagation [9]. It is easy to generalise the case of 0-1-sequences: let A be an alphabet
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of k letters, and let a ∈ A be a specific letter. We are interested in the distribution of
the longest run of a’s in a random word of length n over this alphabet. Words with the
property that no run of more than h consecutive a’s occurs are specified by the symbolic
description

Seq(A \ a)× Seq(Seq1..h(a)× Seq≥1(A \ a))× Seq0..h(a),

which yields the generating function

Gh(z) =
1

1− (k − 1)z
·
(

1− z(1− zh)
1− z

· (k − 1)z

1− (k − 1)z

)−1

·1− z
h+1

1− z
=

1− zh+1

1− kz + (k − 1)zh+2
.

Theorem 3 applies with α = −1 and R(z, u) = 1 − kz + (k − 1)z2u. We find ζ = 1/k,
c = (k− 1)/k3 and A = (k− 1)/k2, and so the longest run of a’s is asymptotically Gumbel
distributed with mean

logk n+
γ + log(k − 1)

log k
− 3

2
+ ψk(logk((k − 1)n)) + o(1).

Alternatively, one might be interested in the length of the longest run of any letter.
If Gh(z) is the generating function for nonempty words over the alphabet A such that no
letter occurs more than h times in a row, then we have

Gh(z) =
kz(1− zh)

1− z
+Gh(z) · (k − 1)z(1− zh)

1− z
,

since such a word is either a single run of one of the k letters or obtained from a shorter
word by appending a run of equal letters at the end. It follows that

Gh(z) =
kz(1− zh)

1− kz + (k − 1)zh+1
,

and Theorem 3, with α = −1 and R(z, u) = 1 − kz + (k − 1)zu, yields that the average
length of the longest run of any letter is

logk n+
γ + log(k − 1)

log k
− 1

2
+ ψk(logk((k − 1)n)) + o(1),

which is just one more than the average length of the longest run of a fixed letter.

Further material on run statistics can be found in [13].

This example can be generalised further in many ways. For instance, consider the
longest sequence of zeros in the Zeckendorf expansion of an integer: recall that any positive
integer can be written uniquely as a sum of nonconsecutive Fibonacci numbers, which gives
rise to a digital expansion, e.g. 1000101 is the representation of 25 since 21 + 3 + 1 = 25.
Let us consider, for simplicity’s sake, the Zeckendorf expansions of all positive integers less
than Fn+2 (the (n+ 2)-th Fibonacci number), which have length at most n. Equivalently,
these are all the 0-1-sequences of length at most n, starting with a 1, such that there are
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no consecutive 1’s. Again, let us only consider those for which every run of 0’s has length
at most h. The symbolic description is now

Seq(1× Seq1..h(0))× 1× Seq0..h(0).

We get the generating function

Gh(z) =
1

1− z
·
(

1− z2(1− zh)
1− z

)−1

· z · 1− zh+1

1− z
=

z(1− zh+1)

(1− z)(1− z − z2 + zh+2)
,

where the first factor 1/(1−z) takes the fact into account that we want to count sequences
of length at most n rather than precisely n (which does not make a big difference though).
Again it is plain to see that Theorem 3 applies, this time with α = −1 and R(z, u) =
1 − z − z2 + z2u. Specifically, we find the values ζ = (

√
5 − 1)/2, b = (

√
5 + 1)/2,

c = (3
√

5− 5)/10 and A = (5−
√

5 )/10.

Another variant of the same problem is to consider balanced 0-1-sequences, i.e., se-
quences with the same number n of zeros and ones, as it was done in [13]. As we will see,
the situation becomes somewhat more complicated in this example. It is advantageous to
consider a bivariate variable first in which z marks ones and w marks zeros. Using the
symbolic description (1) that was already given in the introduction, we find the generating
function

Fh(z, w) =
1

1− w
·
(

1− z(1− zh)
1− z

· w

1− w

)−1

· 1− zh+1

1− z
=

1− zh+1

1− z − w + wzh+1

for 0-1-sequences without runs of more than h consecutive ones. We need to extract the
diagonal of this bivariate function, which can be done by means of a standard trick involving
contour integration (see for instance [4]):

Gh(z) =
1

2πi

∮
C
F
(
t,
z

t

) dt

t

=
1

2πi

∮
C

1− th+1

t− t2 − z + zth+1
dt.

for a suitable curve C surrounding 0. It follows that Gh(z) is the residue of the integrand at
the point t = th(z) implicitly defined by t− t2− z+ zth+1 = 0 that lies closest to the origin
(there is a unique solution of this equation that is analytic at 0 and satisfies th(0) = 0).
The dominant singularity of th(z) (and thus also Gh(z)) can be found as the solution of
the system

t− t2 − z + zth+1 = 0,

∂

∂t
(t− t2 − z + zth+1) = 1− 2t+ (h+ 1)zth = 0.

One can reduce this system to a single equation for t and apply bootstrapping to find that
the solution t = τh is asymptotically given by

τh =
1

2
+ (h+ 1)2−h−3 +O(h22−2h),
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which in turn implies that the singularity is located at

ζh =
1

4
+ 2−h−3 +O(h22−2h).

Now one finds that t(z) has an expansion of the form

t(z) = τh − ah
√
ζh − z + · · · ,

where ah = 1 +O(h22−h), and further

Gh(z) =
1− t(z)h+1

1− 2t(z) + (h+ 1)zt(z)h+1
=

Ch√
1− z/ζh

+ . . . ,

where Ch = 1+O(h22−h) (further terms can be estimated as well). Now Theorems 1 and 2
apply again (α = −1/2, ρ = 1/2, c = 1/8, A = 1/2), meaning that the longest run still
follows a Gumbel distribution in this case, with mean

log2 n+
γ

log 2
− 1

2
+ ψ2(log2 n) + o(1).

4.2. Compositions. A composition of n is a way to write n as an ordered sum of positive
integers. As in the previous section, we are interested in the distribution of the longest
run, a problem considered in [3] (see also the recent paper by Wilf [15]). It is somewhat
more complicated to derive the generating function for this purpose: let Gh(z) denote
the generating function for compositions whose longest run has length at most h, and let
Gh,a(z) be the generating function for the subclass of these compositions whose last term
is a. Then we have

Gh,a(z) = (Gh(z)−Gh,a(z)) · z
a(1− zah)

1− za
,

since such compositions can be obtained by appending a run of a’s to a composition that
does not end on a. Solving for Gh,a(z), we find

Gh,a(z) =
za(1− zah)
1− za(h+1)

Gh(z),

and summing over all a yields

Gh(z) = 1 +
∑
a≥0

Gh,a(z) = 1 +Gh(z) ·
∑
a≥1

za(1− zah)
1− za(h+1)

and finally

Gh(z) =

(
1−

∑
a≥1

za(1− zah)
1− za(h+1)

)−1

.
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The special case h = 1 corresponds to so-called Carlitz compositions, see [8]. To see why
this sequence of generating functions fits our general asymptotic scheme, write

Gh(z) =

(
1−

∑
a≥1

za +
∑
a≥1

za(h+1)(1− za)
1− za(h+1)

)−1

=

(
1− 2z

1− z
+
∑
a≥1

za(h+1)(1− za)
1− za(h+1)

)−1

.

This is again a family of functions to which Theorem 3 applies: we have α = −1 and

R(z, u) =
1− 2z

1− z
+
∑
a≥1

(uz)a(1− za)
1− (uz)a

,

which is indeed analytic for z and u inside the unit circle. It is easy to see that ζ = 1/2,
and

∂R

∂z
(z, 0) = − 1

(1− z)2
,

∂R

∂u
(z, 0) = z(1− z),

hence c = 1/16, A = 1/8, and the mean length of the longest run in a composition is
therefore

log2 n+
γ

log 2
− 5

2
+ ψ2(log2 n) + o(1).

4.3. Geometric random variables. This example is essentially an extension of the pre-
vious one: the analogy between compositions and sequences of geometrically distributed
random variables is well known and was also exploited in the aforementioned paper [3].
Consider sequences of n independent geometrically distributed random variables X1, X2,
. . . , Xn, where P(Xi = j) = pqj−1 for all i, j ≥ 1 (0 < p, q < 1, p+ q = 1). Once again, we
study the behaviour of the longest run. This time, Gh(z) denotes the generating function
for the probability that the length of the longest run is at most h, and Gh,a(z) is the gener-
ating function for this probability, restricted to the case that the value of the last random
variable is a. Then we have, in complete analogy to the previous example,

Gh,a(z) =
(
Gh(z)−Gh,a(z)

)
· pq

a−1z(1− (pqa−1z)h)

1− pqa−1z
,

which yields

Gh(z) =

(
1−

∑
a≥1

pqa−1z(1− (pqa−1z)h)

1− (pqa−1z)h+1

)−1

=

(
1−

∑
a≥1

pqa−1z +
∑
a≥1

(pqa−1z)h+1(1− pqa−1z)

1− (pqa−1z)h+1

)−1

=

(
1− z +

∑
a≥1

(pqa−1z)h+1(1− pqa−1z)

1− (pqa−1z)h+1

)−1

.
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Theorem 3 does not apply directly, but the same bootstrapping mechanism can be
employed to determine the behaviour of the dominant singularity. We are looking for zeros
of the function

Rh(z) = 1− z +
∑
a≥1

(pqa−1z)h+1(1− pqa−1z)

1− (pqa−1z)h+1
.

The sum can be estimated as follows: if |z| ≤ p−1/2, then∣∣∣∣∣∑
a≥1

(pqa−1z)h+1(1− pqa−1z)

1− (pqa−1z)h+1

∣∣∣∣∣ ≤∑
a≥1

(pqa−1z)h+1(1 +
√
p)

1−√p

=
1 +
√
p

1−√p
· (pz)h+1

1− q1+h
≤

1 +
√
p

1−√p
· p(h−1)/2,

which is less than p−1/2 − 1 for sufficiently large h, hence Rouché’s theorem (comparing
with 1− z) shows that there is precisely one zero inside the circle {z : |z| ≤ p−1/2}, and

Rh(1) > 0, Rh(p
−1/2) ≤ 1− p−1/2 +

1 +
√
p

1−√p
· p(h−1)/2 < 0

for sufficiently large h, hence the zero ζh is real, positive and lies between 1 and p−1/2.
Moreover, the above estimate shows that ζh = 1 + O(ph/2), which in turn implies ζhh =
1 +O(hph/2). Thus we have

0 = 1− ζh +
∑
a≥1

(pqa−1ζh)
h+1(1− pqa−1ζh)

1− (pqa−1ζh)h+1

= 1− ζh +
∑
a≥1

(pqa−1)h+1(1− pqa−1)
(
1 +O(hph/2)

)
= 1− ζh + qph+1

(
1 +O(hph/2 + qh)

)
,

which finally yields ζh = 1 + qph+1 +O(hp3h/2 + (pq)h). From here, one can easily argue as
in the proof of Theorem 3 to show that the conditions of Theorems 1 and 2 are satisfied
with ζ = 1, ρ = p and c = A = pq. Hence the average of the longest run is

logb n−
γ + log q

log p
− 1

2
+ ψb(logb n+ logb q) + o(1)

with b = p−1.

4.4. Paths. Just as in the other examples, the longest repetition of a certain pattern
typically follows a Gumbel distribution—lattice paths such as Dyck paths or Motzkin
paths are no exception here. Perhaps the simplest example of this type is the longest
horizontal segment (i.e., the longest repetition of level steps) in a Motzkin path, which was
considered in [14]. Any Motzkin path can be obtained from a Dyck path by inserting a
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sequence of level steps (possibly of length 0) after every up- or down-step, and possibly
also adding a sequence of level steps at the beginning. This yields the generating function

Gh(z) =
1− zh+1

1− z
·

1−
√

1− 4(z(1− zh+1)/(1− z))2

2(z(1− zh+1)/(1− z))2

=
1− z −

√
1− 2z − 3z2 + 8zh+3 − 4z2h+4

2z2(1− zh+1)
,

to which Theorem 3 can be applied with α = 1/2 and R(z, u) = 1−2z−3z2 +8z3u−4z4u2.
We find ζ = 1/3, c = 2/27 and A = 2/9, so that the mean in this case is

log3 n+
γ + log 2

log 3
− 3

2
+ ψ3(log3 n+ log3 2) + o(1).

The longest plateau (i.e., the longest horizontal segment in a Motzkin path that is
preceded by an ascent and followed by a descent) is a very similar example. If one introduces
a second variable v to the generating function for Dyck paths (cf. [14]) that marks peaks
(ud), one obtains

1− (v − 1)x2 −
√

(1− (v − 1)x2)2 − 4x2

2x2

We replace x by z/(1 − z), v by 1 − zh+1 and multiply by another factor 1/(1 − z) (for
initial level steps) to obtain the generating function for Motzkin paths whose plateaus are
no longer than h:

Gh(z) =
(1− z)2 + zh+3 −

√
(1− z2 + zh+3)(1− 4z + 3z2 + zh+3)

2z2(1− z)
.

We apply Theorem 3 again, now with α = 1/2 andR(z, u) = (1−z2+z3u)(1−4z+3z2+z3u).
Then ζ = 1/3 again, c = 1/54, A = 1/18. Hence the length of the longest plateau in a
Motzkin path follows a Gumbel distribution with mean

log3 n+
γ − log 2

log 3
− 3

2
+ ψ3(log3 n− log3 2) + o(1).

In Dyck paths, there are no horizontal segments, but of course it is still possible to
consider repeated patterns: consider, for instance, the longest zigzag sequence in a Dyck
path, i.e., the longest sequence of the form udu . . . du (u standing for up-steps, d for down-
steps), a problem that was raised in [11].

To this end, let us first determine the generating function for Dyck paths that do not
contain the pattern udu. This family can be symbolically described by

P = ε+ ud+ u(P − ε)dP ,
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where ε stands for the empty sequence. It follows easily that the generating function is
given by

1 + x−
√

1− 2x− 3x2

2x
,

which yields the Motzkin numbers. A Dyck path for which the longest zigzag sequence
contains at most h steps up can then be obtained from a udu-free path by replacing every
u by a sequence of the form udu . . . du with at most h u’s. This amounts to replacing x by
z(1− zh)/(1− z) in the generating function, which yields

Gh(z) =
1− zh+1 −

√
(1− zh+1)(1− 4z + 3zh+1)

2z(1− zh)
.

Once again, Theorem 3 applies, this time with α = 1/2 and R(z, u) = (1−uz)(1−4z+3uz).
We obtain ζ = 1/4, c = 3/16 and A = 3/4. Therefore, the mean length (i.e., number of
up-steps) of the longest zigzag sequence in a Dyck path of length 2n is

log4 n+
log 3 + γ

log 4
− 1

2
+ ψ4(log4 n+ log4 3) + o(1).

In a similar vein, one can study the longest ascent, i.e., the longest sequence of the
form uh. Let Gh(z) denote the generating function for Dyck paths whose longest ascent is
of length ≤ h, and let Gh,k(z) denote the generating function for those Dyck paths among
this class for which the initial ascent has length k. If Dh and Dh,k denote the respective
families, then we have

Dh,k = uDh,k−1dDh
for k ≤ h, which translates to

Gh,k(z) = zGh,k−1(z)Gh(z)

with initial value Gh,0(z) = 1 and Gh,k(z) = 0 for k > h. Hence we obtain

Gh,k(z) = zkGh(z)k

and by summing over all k ≤ h

Gh(z) =
h∑
k=0

Gh,k(z) =
1− (zGh(z))h+1

1− zGh(z)
.

This example is quite different from the previous ones in this subsection in that it does
not fit the scheme of Theorem 3. It is slightly easier to work with Fh(z) = zGh(z), which
satisfies the functional equation

Fh(z) = z · 1− Fh(z)h+1

1− Fh(z)
.

This functional equation belongs to the general scheme y(z) = zφ(y(z)), corresponding to
simply generated families of trees, see for instance [2, Theorem VII.3]. It is well known
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that the dominant singularity is of square root type, and that it can be determined as the
solution (z, f) = (ζh, ξh) to the system formed by the equation and its partial derivative:

f = z · 1− fh+1

1− f
,

1 = z · 1− (h+ 1)fh + hfh+1

(1− f)2
,

which yields

1− 2f = (h− 1)fh+2 − hfh+1,

and by bootstrapping ξh = 1/2 + (h+ 1)2−h−3 +O(h22−2h) as well as ζh = 1/4 + 2−h−3 +
O(h22−2h). Now one can verify the conditions of Theorem 1 and Theorem 2 in the same
way as in the proof of Theorem 3 (or as it was shown earlier in Section 4.1 in the example
on balanced 0-1-sequences) to obtain that the longest ascent in a Dyck path of length 2n
is asymptotically Gumbel distributed with mean

log2 n+
γ

log 2
− 3

2
+ ψ2(log2 n) + o(1).

4.5. Trees. Yet another simple example that leads to the same type of behaviour is the
largest outdegree in a plane tree (i.e., a rooted tree in which the children of each vertex are
ordered), cf. [12]. The family Th of plane trees whose maximum outdegree is at most h is
given by the recursive symbolic description

Th = • × Seq0..h(Th),

from which we obtain

Gh(z) = z · 1−Gh(z)h+1

1−Gh(z)

for the associated generating function Gh(z). Note that this is essentially the same equation
as in Section 4.4 for the longest sequence of ascents in Dyck paths. It follows that the two
examples lead to the same distribution.

Another tree parameter that leads to the same type of distribution is the longest chain
of unary nodes in a unary-binary tree, which was studied in [14]. Suppose we want to
count unary-binary trees with the property that there are no chains of more than h unary
nodes. Such a tree consists of a chain of at most h unary nodes (possibly 0), starting at
the root, followed by a binary node with two branches (or nothing). Hence the generating
function Gh(z) satisfies

Gh(z) =
z(1− zh+1)

1− z
(1 +Gh(z)2),

from which one obtains

Gh(z) =
1− z +

√
1− 2z − 3z2 + 8z3+h − 4z2h+4

2z(1− zh+1)
.
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This is essentially the same as the generating function for Motzkin paths with bounded
sequences of level steps, as described in Section 4.4. One can, however, modify this example
to other families of trees to obtain more interesting results.

Let us consider the longest chain of unary nodes in rooted labelled trees, and related
to this problem, the longest path without branching (i.e., all internal nodes have degree 2)
in a labelled (unrooted) tree. We first determine the generating function Fh for the family
Rh of rooted labelled trees in which no chain of more than h − 1 successive unary nodes
occurs. In the same way as before, we obtain

Fh(z) =
z(1− zh)

1− z
(
eFh(z) − Fh(z)

)
or, after some simple manipulations,

Fh(z) =
z(1− zh)
1− zh+1

eFh(z).

A rooted tree without a branchless path of length > h belongs to one of the following
classes:

• The root has degree 1, and its unique branch belongs to Rh. The generating
function for this case is clearly zFh(z).
• The root has degree 2: then it belongs to a path of length 2 ≤ ` ≤ h whose internal

nodes have degree 2, while the ends are either leaves or nodes of degree ≥ 3. The
generating function is

1

2

h∑
`=1

(`− 1)zl+1
(
eFh(z) − Fh(z)

)2
.

`− 1 gives the number of positions of the root within the path, and the factor 1/2
takes symmetry into account.
• The tree only consists of the root, or the root has degree 3 or more, and the branches

belong to Rh: the generating function for this case is

z

(
eFh(z) − Fh(z)− Fh(z)2

2

)
.

Similarly, we consider edge-rooted labelled trees without branchless paths of length > h:
the generating function can be obtained as in the second case above: it is given by

1

2

h∑
`=1

`zl+1
(
eFh(z) − Fh(z)

)2
,

since any edge has to belong to a branchless path of length 1 ≤ ` ≤ h. If we subtract
the generating function for edge-rooted trees from the generating function for rooted trees,
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then every labelled tree (without root) is counted exactly once. The result is the generating
function

Gh(z) = zFh(z) +
1

2

h∑
`=1

(`− 1)zl+1
(
eFh(z) − Fh(z)

)2
+ z

(
eFh(z) − Fh(z)− Fh(z)2

2

)

− 1

2

h∑
`=1

`zl+1
(
eFh(z) − Fh(z)

)2
,

which simplifies, after a couple of manipulations, to

Gh(z) = zeFh(z)

(
1− Fh(z)

2

)
.

Let T (z), defined implicitly by T (z) = zeT (z), be the exponential generating function for
rooted labelled trees, which is well known to have a square-root type singularity at 1/e.
Then

Fh(z) = T

(
z(1− zh)
1− zh+1

)
,

which means that the dominant singularity of Gh is given by the equation

ζh(1− ζhh )

1− ζh+1
h

=
1

e
,

and our usual bootstrapping procedure yields ζh = 1/e+ (e−1)e−h−2. Note also that T (z)
has an expansion around 1/e:

T (z) = 1−
√

2(1− ez) +
2

3
(1− ez) + . . . ,

and

eT (z)

(
1− T (z)

2

)
=
e

2
− e

2
(1− ez) +

2
√

2e

3
(1− ez)3/2 + . . . .

Now one can argue as in the proof of Theorem 3 that the conditions of Theorems 1 and 2
are satisfied (this time with α = 3/2, ρ = 1/e, c = (e−1)/e2 and A = (e−1)/e). Hence the
distribution of the longest branchless path in a random labelled tree is again asymptotically
Gumbel, and the mean is

log n+ γ + log(e− 1)− 1

2
+ ψe(log n+ log(e− 1)) + o(1).

The same analysis can be carried out with unlabelled trees, although the details are slightly
more involved. It is also worth mentioning that the case h = 1 corresponds to homeomor-
phically irreducible trees (no vertices of degree 2), whose enumeration was already studied
in [6] (see also [5]).
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5. Conclusion

As we have seen, it is a very typical situation that the limiting distribution of an
extremal parameter in a combinatorial structure is the Gumbel distribution, and that
fluctuations in the average occur. The aim of this paper was to provide a unified approach
to problems of this type and to illustrate this approach by means of a variety of examples,
both old and new. Naturally, the examples are by no means exhaustive, and there are
certainly many other natural problems where the same kind of behaviour can be observed.
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